Test de WaldLe test de Wald est un test paramétrique économétrique dont l'appellation vient du mathématicien américain d'origine hongroise Abraham Wald (-) avec une grande variété d'utilisations. Chaque fois que nous avons une relation au sein des ou entre les éléments de données qui peuvent être exprimées comme un modèle statistique avec des paramètres à estimer, et tout cela à partir d'un échantillon, le test de Wald peut être utilisé pour « tester la vraie valeur du paramètre » basé sur l'estimation de l'échantillon.
Informant (statistics)In statistics, the informant (or score) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular point of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter values. If the log-likelihood function is continuous over the parameter space, the score will vanish at a local maximum or minimum; this fact is used in maximum likelihood estimation to find the parameter values that maximize the likelihood function.
Test du χ² de PearsonEn statistique, le test du χ2 de Pearson ou test du χ2 d'indépendance est un test statistique qui s'applique sur des données catégorielles pour évaluer la probabilité de retrouver la différence de répartition observée entre les catégories si celles-ci étaient indépendantes dans le processus de répartition sous-jacent. Il convient aux données non-appariées prises sur de grands échantillons (n>30). Il est le test du χ2 le plus communément utilisé (comparativement aux autres tests du χ2 tels que le test du χ2 de Yates, le test du rapport de vraisemblance ou le test du porte-manteau.
Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Fonction de vraisemblancevignette|Exemple d'une fonction de vraisemblance pour le paramètre d'une Loi de Poisson En théorie des probabilités et en statistique, la fonction de vraisemblance (ou plus simplement vraisemblance) est une fonction des paramètres d'un modèle statistique calculée à partir de données observées. Les fonctions de vraisemblance jouent un rôle clé dans l'inférence statistique fréquentiste, en particulier pour les méthodes statistiques d'estimation de paramètres.