Concepts associés (45)
Transfer principle
In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0. An incipient form of a transfer principle was described by Leibniz under the name of "the Law of Continuity".
Méthode d'exhaustion
En mathématiques, la méthode d'exhaustion est un procédé ancien de calcul d'aires, de volumes et de longueurs de figures géométriques complexes. La quadrature est la recherche de l'aire d'une surface, la rectification est celle de la longueur d'une courbe. Dans le cas du calcul de l'aire A d'une figure plane, la méthode d'exhaustion consiste en un double raisonnement par l'absurde : on suppose que son aire est strictement supérieure à A, puis on aboutit à une contradiction ; on suppose ensuite que son aire est strictement inférieure à A, puis on aboutit à une autre contradiction.
Archimédien
À l'origine, l'énoncé de l'axiome d'Archimède est le suivant : « Pour deux grandeurs inégales, il existe toujours un multiple entier de la plus petite, supérieur à la plus grande. » Une structure algébrique est dite archimédienne si ses éléments vérifient une telle propriété. Intuitivement, la propriété d'Archimède indique que pour deux valeurs, la plus grande pourra toujours être mesurée à l'aune de la plus petite : en ajoutant un nombre fini de fois la plus petite valeur, on finira toujours par dépasser la plus grande.
Smooth infinitesimal analysis
Smooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of , it views all functions as being continuous and incapable of being expressed in terms of discrete entities. As a theory, it is a subset of synthetic differential geometry. The nilsquare or nilpotent infinitesimals are numbers ε where ε2 = 0 is true, but ε = 0 need not be true at the same time.
Standard part function
In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal , the unique real infinitely close to it, i.e. is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat, as well as Leibniz's Transcendental law of homogeneity.
Ultraproduit
En mathématiques, un ultraproduit est une construction basée sur un ultrafiltre utilisée principalement en algèbre abstraite et en théorie des modèles (une branche de la logique mathématique) ; elle permet par exemple d'obtenir des extensions des réels, les nombres hyperréels, ayant les mêmes propriétés élémentaires que ceux-ci. La méthode générale de construction d'ultraproduits part d'un ensemble d'indices I, d'une structure Mi pour chaque élément i de I (toutes ayant la même signature), et d'un ultrafiltre U sur I.
Adégalité
L’adégalité, dans l'histoire du calcul infinitésimal, est une technique développée par Pierre de Fermat, dont il dit qu'il l'a empruntée à Diophante. L'adégalité a été interprétée par certains chercheurs comme signifiant « l'égalité approximative ». John Stillwell illustre la technique dans le cadre de différentiation de comme suit. Si nous désignons l'adégalité par , alors il est juste de dire que et donc que pour la parabole est adégal à . Cependant, n'est pas un nombre ; en fait, est le seul nombre auquel est adégal.
The Analyst
The Analyst (subtitled A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith) is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended.
Bonaventura Cavalieri
Bonaventura Francesco Cavalieri (en latin, Cavalerius) (né en 1598 à Milan et mort le à Bologne) est un mathématicien, géomètre, astronome et universitaire italien du connu pour le principe de Cavalieri. Il est membre de l'ordre des jésuates. Né dans le duché de Milan, Bonaventura Cavalieri étudie la théologie au monastère de San Gerolamo et la géométrie à l'université de Pise. Il publie onze livres dont le premier, en 1632. Il travaille sur les problèmes du système optique et du mouvement.
Rigour
Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law. "Rigour" comes to English through old French (13th c.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.