La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
En logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.
La logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a variable may be said to be either free or bound. The terms are opposites. A free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. Some older books use the terms real variable and apparent variable for free variable and bound variable, respectively.
En logique et en mathématiques, la négation est un opérateur logique unaire. Il sert à nier une proposition. On note la négation d'une proposition P de diverses manières dont : ¬P (utilisée dans cet article); Non P ; Ces formulations se lisent « négation de P » ou plus simplement « non P ». Dans l'interprétation par des tables de vérité, la proposition ¬P est vraie quand P est fausse et elle est fausse quand P est vraie. La table de vérité s'écrit simplement : ou On remarque alors que où dénote une contradiction.
Les logiques polyvalentes (ou multivalentes, ou multivaluées) sont des alternatives à la logique classique aristotélicienne, bivalente, dans laquelle toute proposition doit être soit vraie soit fausse. Elles sont apparues à partir des années 1920, surtout à la suite des travaux du logicien polonais Jan Łukasiewicz. Elles sont principalement étudiées au niveau du seul calcul propositionnel et peu au niveau du calcul des prédicats.
Une proposition est en philosophie ce qui dans un énoncé est susceptible d'être conservé lors d'une traduction et de recevoir une valeur de vérité, c'est-à-dire d'être vrai ou faux. Un exemple courant pour désigner ce qu'est une proposition par rapport à un énoncé ou à une phrase est de comparer les deux énoncés ou phrases suivantes : « Il pleut. » « It's raining. » Ces deux énoncés ou phrases ont la même proposition, à savoir qu'il pleut. Un autre exemple courant dans le domaine est de comparer « La neige est blanche » et « Snow is white ».
Le faux dilemme, appelé aussi exclusion du tiers, fausse dichotomie ou énumération incomplète, est un raisonnement fallacieux qui consiste à présenter deux solutions à un problème donné comme si elles étaient les deux seules possibles, alors qu'en réalité, il en existe d'autres. En rhétorique, cette dichotomisation vise à réduire une situation complexe à une alternative entre deux options, pouvant conduire au manichéisme (pensée en noir et blanc). « Soit le créationnisme est vrai, soit le darwinisme est vrai.
La disjonction logique, ou disjonction non exclusive, de deux assertions est une façon d'affirmer qu'au moins une de ces deux assertions est vraie (la première, la deuxième, ou les deux). Dans le langage logique ou mathématique, et dans les domaines techniques qui l'emploient, elle se traduit par le OU logique, un opérateur logique dans le calcul des propositions. La proposition obtenue en reliant deux propositions par cet opérateur s'appelle également leur disjonction ou leur somme logique.
La logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.