Satake diagramIn the mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by whose configurations classify simple Lie algebras over the field of real numbers. The Satake diagrams associated to a Dynkin diagram classify real forms of the complex Lie algebra corresponding to the Dynkin diagram. More generally, the Tits index or Satake–Tits diagram of a reductive algebraic group over a field is a generalization of the Satake diagram to arbitrary fields, introduced by , that reduces the classification of reductive algebraic groups to that of anisotropic reductive algebraic groups.
VersorIn mathematics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the form where the r2 = −1 condition means that r is a unit-length vector quaternion (or that the first component of r is zero, and the last three components of r are a unit vector in 3 dimensions). The corresponding 3-dimensional rotation has the angle 2a about the axis r in axis–angle representation. In case a = π/2 (a right angle), then , and the resulting unit vector is termed a right versor.
Klein geometryIn mathematics, a Klein geometry is a type of geometry motivated by Felix Klein in his influential Erlangen program. More specifically, it is a homogeneous space X together with a transitive action on X by a Lie group G, which acts as the symmetry group of the geometry. For background and motivation see the article on the Erlangen program. A Klein geometry is a pair (G, H) where G is a Lie group and H is a closed Lie subgroup of G such that the (left) coset space G/H is connected.
Plan de CayleyEn mathématiques, le plan de Cayley (ou plan projectif octonionique) P2(O) est un plan projectif sur les octonions. Le plan de Cayley a été découvert en 1933 par la mathématicienne allemande Ruth Moufang et porte le nom d'Arthur Cayley pour son article de 1845 décrivant les octonions. Dans le plan de Cayley, les droites et les points peuvent être définis de manière naturelle de sorte à former un espace projectif de dimension deux, c'est-à-dire un plan projectif. C'est un plan non arguésien, c'est-à-dire que le théorème de Desargues n'est pas vérifié.
Vecteur de KillingEn mathématiques, un vecteur de Killing, ou champ de Killing, est un champ vectoriel sur une variété (pseudo-)riemannienne qui conserve la métrique de cette variété et met en évidence les symétries continues de celle-ci. Intuitivement un vecteur de Killing peut être vu comme un « champ de déplacement » , c'est-à-dire associant à un point M de la variété le point M' défini par le déplacement de M le long de la courbe passant par M dont est le vecteur tangent.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Variété de drapeaux généraliséeEn mathématiques, une variété de drapeaux généralisée ou tordue est un espace homogène d'un groupe (algébrique ou de Lie) qui généralise les espaces projectifs, les grassmanniennes, les quadriques projectives et l'espace de tous les drapeaux de signature donnée d'un espace vectoriel. La plupart des espaces homogènes de points ou de figures de la géométrie classique sont des variétés de drapeaux généralisées ou des espaces symétriques ou des variétés symétriques (analogues en géométrie algébrique des espaces symétriques), ou leur sont liés.
Représentation unitaireEn mathématiques, une représentation unitaire d'un groupe G est une représentation linéaire π de G sur un espace de Hilbert complexe V telle que π(g) est un opérateur unitaire pour tout g ∈ G. La théorie générale est bien développée dans le cas où G est un groupe topologique localement compact (séparé) et les représentations sont fortement continues. La théorie a été largement appliquée en mécanique quantique depuis les années 1920, particulièrement sous l'influence par le livre de 1928 de Hermann Weyl, Gruppentheorie und Quantenmechanik.
Modèle de l'hyperboloïdeEn géométrie, le modèle de l'hyperboloïde, également dénommé modèle de Minkowski ou modèle de Lorentz (d'après les noms de Hermann Minkowski et Hendrik Lorentz), est un modèle de géométrie hyperbolique dans un espace de Minkowski de dimension n. Ce modèle d'espace hyperbolique est étroitement lié au modèle de Klein ou au disque de Poincaré. Espace de Minkowski Si x = (x0, x1, ...