Concepts associés (22)
Symbole de Levi-Civita
En mathématiques, le symbole de Levi-Civita, noté ε (lettre grecque epsilon), est un objet antisymétrique d'ordre 3 qui peut être exprimé à partir du symbole de Kronecker : Ainsi, ne peut prendre que trois valeurs : –1, 0 ou 1. En dimension 3, on peut figurer le symbole de Levi-Civita comme suit : On remarque que si , et , alors représente une permutation et le symbole de Levi-Civita correspondant est sa signature.
Matrice de rotation
En mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Axis–angle representation
In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained.
Vecteur
droite|cadre|Deux vecteurs et et leur vecteur somme. En mathématiques, un vecteur est un objet généralisant plusieurs notions provenant de la géométrie (couples de points, translations, etc.), de l'algèbre (« solution » d'un système d'équations à plusieurs inconnues), ou de la physique (forces, vitesses, accélérations). Rigoureusement axiomatisée, la notion de vecteur est le fondement de la branche des mathématiques appelée algèbre linéaire.
Algèbre multilinéaire
En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept de vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire est bâtie sur le concept de tenseur et développe la théorie des espaces tensoriels. Dans les applications, de nombreux types de tenseurs surviennent. La théorie se veut exhaustive et comprend l'étude d'un certain nombre d'espaces et l'exposé de leurs relations.
Moment d'une force
Le moment d'une force par rapport à un point donné est une grandeur physique vectorielle traduisant l'aptitude de cette force à faire tourner un système mécanique autour de ce point, souvent appelé pivot. Il s'exprime habituellement en (newtons mètres) par radian, et peut l'être de manière équivalente en joules par radian. Le moment d'un ensemble de forces, et notamment d'un couple, est la somme (géométrique) des moments de ces forces.
Analyse vectorielle
L'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Orientation (vector space)
The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called .
Produit dyadique
En mathématiques, et plus précisément en algèbre multilinéaire, le produit dyadique de deux vecteurs, et , chacun ayant la même dimension, est le produit tensoriel de ces vecteurs, lequel est un tenseur d'ordre deux et de rang un. Si et sont deux vecteurs d'un espace vectoriel E de dimension finie n, muni d'une base donnée , les coordonnées du produit dyadique dans la base correspondante du produit tensoriel sont données par où , et , et alors Le produit dyadique peut être simplement représenté par la matrice carrée obtenue en multipliant en tant que vecteur colonne par en tant que vecteur ligne.
Blade (geometry)
In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product (informally wedge product) of 1-vectors, and is of grade k. In detail: A 0-blade is a scalar. A 1-blade is a vector. Every vector is simple. A 2-blade is a simple bivector. Sums of 2-blades are also bivectors, but not always simple.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.