Concepts associés (57)
Mathématiques à rebours
Les mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».
Nicolas Bourbaki
Nicolas Bourbaki est un mathématicien imaginaire, sous le nom duquel un groupe de mathématiciens francophones, formé en 1935 à Besse (aujourd'hui Besse-et-Saint-Anastaise) en Auvergne sous l'impulsion d'André Weil, a commencé à écrire et à éditer des textes mathématiques à la fin des . L'objectif premier était la rédaction d'un traité d'analyse. Le groupe s'est constitué en association, lAssociation des collaborateurs de Nicolas Bourbaki, le . Sa composition a évolué avec un renouvellement constant de générations.
David Hilbert
David Hilbert, né en 1862 à Königsberg et mort en 1943 à Göttingen, est un mathématicien allemand. Il est souvent considéré comme un des plus grands mathématiciens du . Il a créé ou développé un large éventail d'idées fondamentales, que ce soit la théorie des invariants, l'axiomatisation de la géométrie ou les fondements de l'analyse fonctionnelle (avec les espaces de Hilbert). L'un des exemples les mieux connus de sa position de chef de file est sa présentation, en 1900, de ses fameux problèmes qui ont durablement influencé les recherches mathématiques du .
Couple (mathématiques)
En mathématiques, un couple de deux objets est la donnée de ces deux objets dans un ordre déterminé. Le couple des deux objets et est noté . Si et sont distincts, le couple est distinct du couple ; en cela, la notion de couple se distingue de la notion de paire où l'ordre des éléments est indifférent. Pour désigner un couple, les anglophones emploient d'ailleurs ordered pair, c’est-à-dire paire ordonnée. Les objets a et b sont appelés respectivement première composante et deuxième composante du couple (a, b).
Luitzen Egbertus Jan Brouwer
Luitzen Egbertus Jan Brouwer (né le à Overschie et mort le à Blaricum) est un mathématicien néerlandais. Aîné de trois enfants, ce fils du maître d'école Egbertus Luitzens Brouwer et de Henderika Poutsma, témoigne dès son plus jeune âge d'une intelligence exceptionnelle. À 16 ans seulement, le jeune prodige s'inscrit à l'université d'Amsterdam pour y étudier les mathématiques, sans pour autant négliger ses lectures de chevet, celles des philosophes Emmanuel Kant et Arthur Schopenhauer.
Théorème de Tarski
NOTOC En logique mathématique, le théorème de Tarski, ou théorème de non définissabilité de Tarski, s'énonce informellement ainsi :On ne peut définir dans le langage de l'arithmétique la vérité des énoncés de ce langage. On s'intéresse ici aux formules du premier ordre sur le langage « 0, s, +, ×, ≤ » vraies sur les entiers. Il s'agit de l'arithmétique vraie (ou la vérité dans N : les nombres entiers positifs). On suppose que le langage est récursif : ce qui est le cas quand les symboles primitifs, « 0, s, +, ×, ≤ » pour l'arithmétique de Peano, sont en nombre fini.
Ur-element
En théorie des ensembles, un ur-element (ou urelement) est quelque chose qui n'est pas un ensemble mais qui peut être élément d'un ensemble. Ainsi, si u est un ur-element, et X un ensemble, on peut avoir ou non : u ∈ X, mais X ∈ u est impossible. Ils partagent ainsi avec le seul ensemble vide le fait de ne posséder aucun élément, mais pour des raisons tout à fait différentes : rien ne peut appartenir à un ur-element parce que cela n'a pas de sens, alors que rien n'appartient à l'ensemble vide par définition.
Primitive recursive arithmetic
Primitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.
Construction des entiers naturels
Il existe plusieurs méthodes classiques de construction des entiers naturels, mais on utilise aujourd’hui le plus souvent celle due à von Neumann . Dans la théorie des ensembles, on définit les entiers par récurrence, en construisant explicitement une suite d'ensembles à partir de l'ensemble vide (la théorie des ensembles postule qu'il existe au minimum un tel ensemble vide).
Abraham Robinson
Abraham Robinson ( en Allemagne - aux États-Unis) est un mathématicien, logicien et un ingénieur en aérodynamique célèbre pour sa création de l’analyse non standard (1961), une théorie mathématique du calcul infinitésimal, qui rend rigoureux l'usage des infiniment petits et des infiniment grands introduit par Leibniz (vers 1690) et largement utilisé par Euler. La formalisation la plus usuelle du calcul infinitésimal, celle mise au point par les analystes du , évacue ces deux notions. Il reçoit la Médaille Brouwer en 1973.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.