Cumulant (statistiques)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, les cumulants d'une loi de probabilité sont des coefficients qui ont un rôle similaire à celui des moments. Les cumulants déterminent entièrement les moments et vice versa, c'est-à-dire que deux lois ont les mêmes cumulants si et seulement si elles ont les mêmes moments. L'espérance constitue le premier cumulant, la variance le deuxième et le troisième moment centré constitue le troisième cumulant.
Random variateIn probability and statistics, a random variate or simply variate is a particular outcome of a random variable; the random variates which are other outcomes of the same random variable might have different values (random numbers). A random deviate or simply deviate is the difference of a random variate with respect to the distribution central location (e.g., mean), often divided by the standard deviation of the distribution (i.e., as a standard score). Random variates are used when simulating processes driven by random influences (stochastic processes).
Espérance mathématiqueEn théorie des probabilités, l'espérance mathématique d'une variable aléatoire réelle est, intuitivement, la valeur que l'on s'attend à trouver, en moyenne, si l'on répète un grand nombre de fois la même expérience aléatoire. Elle se note et se lit . Elle correspond à une moyenne pondérée des valeurs que peut prendre cette variable. Dans le cas où celle-ci prend un nombre fini de valeurs, il s'agit d'une moyenne pondérée par les probabilités d'apparition de chaque valeur.
Probability integral transformIn probability theory, the probability integral transform (also known as universality of the uniform) relates to the result that data values that are modeled as being random variables from any given continuous distribution can be converted to random variables having a standard uniform distribution. This holds exactly provided that the distribution being used is the true distribution of the random variables; if the distribution is one fitted to the data, the result will hold approximately in large samples.
Loi arc sinusEn théorie des probabilités, les loi arc sinus est un ensemble de lois de probabilité à densité dont le support est un intervalle compact. Elles sont un cas particulier de la loi bêta. Les lois arc sinus sont des résultats des marches aléatoires linéaires (en dimension 1) modélisant le mouvement brownien. Plus précisément, elles modélisent le processus de Wiener. Une variable aléatoire X suit la loi arc sinus standard si sa fonction de répartition est donnée par : pour 0 ≤ x ≤ 1, et dont la densité de probabilité est donnée par : sur ]0 ; 1[.
Loi binomialeEn théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes. Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon.
Univariate distributionIn statistics, a univariate distribution is a probability distribution of only one random variable. This is in contrast to a multivariate distribution, the probability distribution of a random vector (consisting of multiple random variables). One of the simplest examples of a discrete univariate distribution is the discrete uniform distribution, where all elements of a finite set are equally likely. It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc.
UnimodalityIn mathematics, unimodality means possessing a unique mode. More generally, unimodality means there is only a single highest value, somehow defined, of some mathematical object. In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak. The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called "unimodal".