Fonction de HeavisideEn mathématiques, la fonction de Heaviside (également fonction échelon unité, fonction marche d'escalier), du nom d’Oliver Heaviside, est la fonction indicatrice de . C'est donc la fonction H (discontinue en 0) prenant la valeur 1 pour tous les réels strictement positifs et la valeur 0 pour les réels strictement négatifs. En 0, sa valeur n'a généralement pas d'importance, même si souvent elle vaut 1/2. C'est une primitive de la distribution de Dirac en théorie des distributions.
Uncorrelatedness (probability theory)In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them. Uncorrelated random variables have a Pearson correlation coefficient, when it exists, of zero, except in the trivial case when either variable has zero variance (is a constant). In this case the correlation is undefined.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Problème du char d'assaut allemandLe problème du char d'assaut allemand réfère à une estimation de la valeur maximale d'une loi uniforme discrète à partir d'un échantillonnage sans remplacement. Il tire son nom de son application par les Alliés de la Seconde Guerre mondiale afin d'estimer la production de chars d'assaut allemands. Le problème peut être abordé selon les approches d' ou bayésienne. Selon l'approche fréquentiste, le nombre total () est fonction du nombre d'échantillons () et de la valeur de l'échantillon le plus élevé () selon la relation suivante : On suppose que l'ennemi produit une série de chars immatriculés par des entiers en commençant par le chiffre 1.
Central momentIn probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized.
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Loi de BatesEn théorie des probabilités et en statistique, la loi de Bates, dénommée suivant la probabiliste Grace E. Bates, est la loi de probabilité de la moyenne de variables aléatoires indépendantes et de loi uniforme continue sur [0 ; 1]. Il ne faut pas confondre cette loi avec la loi d'Irwin-Hall qui est la somme de telles variables aléatoires. La loi de Bates est la loi de probabilité de la moyenne arithmétique de n variables aléatoires U, U, ... , U iid de loi uniforme continue sur l'intervalle [0 ; 1] : La de
Statistique exhaustiveLes statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité. Soit un vecteur d'observation de taille , dont les composantes sont indépendantes et identiquement distribués (iid).
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».