Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les applications du filtrage de Kalman dans les systèmes de contrôle et de communication, en se concentrant sur l'estimation d'état et l'estimation de canal.
Introduit des outils de traitement de signaux statistiques pour les communications sans fil, mettant l'accent sur les applications pratiques et l'expérience pratique avec Python ou Matlab.
Couvre le filtrage adaptatif à l'aide de l'algorithme LMS pour les scénarios d'enregistrement immobile, en mettant l'accent sur la mise en œuvre pratique dans MATLAB.
Explore les techniques de filtrage d'images, y compris les filtres linéaires et non linéaires, pour l'élimination des artefacts et l'amélioration des fonctionnalités.
Explique l'estimation par l'erreur moyenne au carré et l'information de Fisher dans le contexte des filtres adaptatifs et des distributions exponentiées.
Explore le filtre adaptatif Optimal Least Square, en mettant l'accent sur le filtre Finite Impulse Response (FIR) et les stratégies pour réduire le fardeau de calcul.
Explore le traitement adaptatif du signal, la descente de gradient et l'algorithme LMS pour un filtrage efficace et un entraînement au réseau neuronal.