Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Robert LanglandsRobert Langlands, né le en Colombie-Britannique au Canada, est un des mathématiciens majeurs du . Il introduit des idées nouvelles et profondes en théorie des nombres et en théorie des représentations. Robert Langlands soutient son doctorat à l'université Yale en 1960. Pendant les années 1960, il développe la théorie des séries d'Eisenstein introduite par Atle Selberg. Ses travaux qui suivent ont un grand impact mathématique. De 1967 à 1972, il travaille à l'Université Yale.
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Kronecker JugendtraumLe théorème de Kronecker-Weber, d'abord annoncé par Kronecker, dont la démonstration fut complétée par Weber et Hilbert, décrit les extensions abéliennes finies du corps des rationnels. Celles-ci sont contenues dans les extensions cyclotomiques, c'est-à-dire les extensions engendrées par les racines de l'unité. Du point de vue de l'analyse complexe, on construit les racines de l'unité comme valeurs spéciales de la fonction exponentielle.
Forme modulaireEn mathématiques, une forme modulaire est une fonction analytique sur le demi-plan de Poincaré satisfaisant à une certaine sorte d'équation fonctionnelle et de condition de croissance. La théorie des formes modulaires est par conséquent dans la lignée de l'analyse complexe mais l'importance principale de la théorie tient dans ses connexions avec le théorème de modularité et la théorie des nombres.
Forme automorphedroite|vignette|500x500px|La fonction êta de Dedekind est une forme automorphe dans le plan complexe. Une forme automorphique, en analyse harmonique et théorie des nombres, est une fonction d'un groupe topologique G à valeurs dans le corps des nombres complexes (ou un espace vectoriel complexe) qui est invariante sous l'action d'un sous-groupe discret du groupe topologique et qui vérifie certaines conditions de dérivabilité et de croissance à l'infini.
Courbe modulaireEn théorie des nombres et en géométrie algébrique une courbe modulaire désigne la surface de Riemann, ou la courbe algébrique correspondante, construite comme quotient du demi-plan de Poincaré H sous l'action de certains sous-groupes Γ d'indice fini dans le groupe modulaire. La courbe obtenue est généralement notée Y(Γ). On appelle Γ le niveau de la courbe Y(Γ). Depuis Gorō Shimura, on sait que ces courbes admettent des équations à coefficients dans un corps cyclotomique, qui dépend du niveau Γ.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Pierre DelignePierre René, vicomte Deligne est un mathématicien belge, né le à Etterbeek dans la Région de Bruxelles-Capitale. Pierre René Deligne est diplômé de l'Université libre de Bruxelles en 1966, en ayant effectué une année de scolarité à l’école normale supérieure en 1965-1966. Il soutient une première thèse de doctorat en 1968 à Bruxelles. De 1968 à 1984, il est membre de l’Institut des hautes études scientifiques, où il assiste aux séminaires d’Alexandre Grothendieck qu'il appelle son « maître ».
Représentation galoisienneLa théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupes d'unités, des groupes des classes, ou des groupes de Galois eux-mêmes. En théorie algébrique des nombres classique, soit L une extension galoisienne d'un corps de nombres K, et soit G le groupe de Galois correspondant.