Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Fonction de HeavisideEn mathématiques, la fonction de Heaviside (également fonction échelon unité, fonction marche d'escalier), du nom d’Oliver Heaviside, est la fonction indicatrice de . C'est donc la fonction H (discontinue en 0) prenant la valeur 1 pour tous les réels strictement positifs et la valeur 0 pour les réels strictement négatifs. En 0, sa valeur n'a généralement pas d'importance, même si souvent elle vaut 1/2. C'est une primitive de la distribution de Dirac en théorie des distributions.
Fonction entièreEn analyse complexe, une fonction entière est une fonction holomorphe définie sur tout le plan complexe. C'est le cas notamment de la fonction exponentielle complexe, des fonctions polynomiales et de leurs combinaisons par composition, somme et produit, telles que sinus, cosinus et les fonctions hyperboliques. Le quotient de deux fonctions entières est une fonction méromorphe. Considérée comme un cas particulier de la théorie des fonctions analytiques, la théorie élémentaire des fonctions entières ne fait que tirer les conséquences de la théorie générale.
Système de calcul formelUn système de calcul formel (computer algebra system ou CAS en anglais) est un logiciel qui facilite le calcul symbolique. La partie principale de ce système est la manipulation des expressions mathématiques sous leur forme symbolique. Les expressions peuvent être : des polynômes avec de multiples variables ; des fonctions (fonctions trigonométriques, exponentielle, etc.) ; des fonctions spéciales (gamma, zêta, erf, Bessel, etc.
Loi de StudentEn théorie des probabilités et en statistique, la loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ. Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne. Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ à k degrés de liberté.
Intégrale non élémentaireEn mathématiques, une intégrale non élémentaire est une intégrale qui n'a aucune formule en termes de fonctions élémentaires. L'existence de telles fonctions a été démontrée par Joseph Liouville en 1835. Parmi les intégrales non élémentaires, on peut citer où R est une fonction rationnelle à deux variables, P est une fonction polynomiale de degré 3 ou 4 avec des racines simples, qui donnent les intégrales elliptiques ; qui donne le logarithme intégral ; à l'origine de la loi normale. Théorème de Liouvill