Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit le filtre Kalman pour estimer l'état d'un système dynamique à partir de mesures bruyantes, couvrant la prédiction, la mise à jour et les étapes de filtrage.
Explore le filtre Kalman pour l'estimation et la prédiction de l'état dans un cadre gaussien linéaire, en mettant l'accent sur l'optimalité du prédicteur et du filtre.
Explore l'estimation de l'état et le filtrage Kalman pour les systèmes de commande multivariables, avec des applications dans les canaux de communication et la navigation du véhicule.
Explore l'algorithme Kalman Predictor étendu et le filtre Kalman linéaire pour les systèmes de contrôle multivariables, en discutant des défis et des applications.
Explore la prédiction linéaire, les filtres optimaux, les signaux aléatoires, la stationnarité, l'autocorrélation, la densité spectrale de puissance et la transformée de Fourier dans le traitement du signal.