Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le filtre Kalman pour l'estimation et la prédiction de l'état dans un cadre gaussien linéaire, en mettant l'accent sur l'optimalité du prédicteur et du filtre.
Explore les applications du filtrage de Kalman dans les systèmes de contrôle et de communication, en se concentrant sur l'estimation d'état et l'estimation de canal.
Explore les modèles ARCH et GARCH, le regroupement de volatilité, les séries chronologiques, l'estimation et les étapes de filtrage dans les contextes financier et macroéconomique.
Explore le filtre de Kalman variable dans le temps, l'estimation de l'état, les défis liés au conditionnement des sorties mesurées et l'importance des transformations affines.
Explore l'estimation de l'état et le filtrage Kalman pour les systèmes de commande multivariables, avec des applications dans les canaux de communication et la navigation du véhicule.
Introduit le filtre Kalman pour estimer l'état d'un système dynamique à partir de mesures bruyantes, couvrant la prédiction, la mise à jour et les étapes de filtrage.