Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Logique classiqueLa logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Véritéthumb|Walter Seymour Allward, Veritas, 1920 thumb|Nec mergitur ou La Vérité sortant du puits, toile de Édouard Debat-Ponsan, 1898. La vérité (du latin veritas, « vérité », dérivé de verus, « vrai ») est la correspondance entre une proposition et la réalité à laquelle cette proposition réfère. Cependant cette définition correspondantiste de la vérité n'est pas la seule, il existe de nombreuses définitions du mot et des controverses classiques autour des diverses théories de la vérité.
ArgumentationL’argumentation est l'action de convaincre et pousser ainsi l'autre à agir. Contrairement à la persuasion, elle vise à être comprise de tous et résiste à l'utilisation d'arguments fallacieux. L’argument est, en logique et en linguistique, l’ensemble des prémisses données en support à une conclusion. Une argumentation est composée d'une conclusion et d'un ou de plusieurs « éléments de preuve », que l'on appelle des prémisses ou des arguments, et qui constituent des raisons d'accepter cette conclusion.
PhilosophieLa philosophie, du grec ancien (composé de , « aimer », et de , « sagesse, savoir »), signifiant littéralement « amour du savoir » et communément « amour de la sagesse », est une démarche qui vise à une compréhension du monde et de la vie par une réflexion rationnelle et critique. Cette réflexion n’est pas pour autant le propre d’un homme en particulier mais de tout homme dans sa dimension proprement humaine même si certains penseurs en ont fait le cœur de leur activité.
Syllogisme disjonctifEn logique classique, un syllogisme disjonctif (où plus anciennement ponens modus tollendo) est une forme d'argument valide, qui prend la forme d'un syllogisme ayant une déclaration disjonctive dans l'une de ses prémisses. Soit la brèche est une brèche sécurisée, soit elle sera soumis à une amende. La brèche n'est pas une brèche de sécurité. Par conséquent, elle sera soumis à une amende. En logique propositionnelle, une syllogisme disjonctif (aussi connu sous le nom de l'argument de kneecapper, élimination ou, ou abrégé vE), est une règle d'inférence valide.
SequentIn mathematical logic, a sequent is a very general kind of conditional assertion. A sequent may have any number m of condition formulas Ai (called "antecedents") and any number n of asserted formulas Bj (called "succedents" or "consequents"). A sequent is understood to mean that if all of the antecedent conditions are true, then at least one of the consequent formulas is true. This style of conditional assertion is almost always associated with the conceptual framework of sequent calculus.
Syllogisme hypothétiqueEn logique classique, un syllogisme hypothétique est une règle d'inférence valide, qui prend la forme d'un syllogisme ayant une implication pour un ou deux de ses prémisses. Si je ne me réveille pas, alors je ne peux pas aller travailler. Si je ne peux pas aller travailler, alors je ne vais pas être payé. Par conséquent, si je ne me réveille pas, alors je ne vais pas être payé. En logique propositionnelle, un syllogisme hypothétique est le nom d'une règle d'inférence valide (souvent abrégé HS et parfois aussi appelé l'argument de la chaîne, la règle de la chaîne, ou le principe de transitivité de l'implication).
Proposition contraposéeEn logique, la contraposition est un type de raisonnement consistant à affirmer l'implication « si non B alors non A » à partir de l'implication « si A alors B ». L'implication « si non B alors non A » est appelée contraposée de « si A alors B ». Par exemple, la proposition contraposée de la proposition « s'il pleut, alors le sol est mouillé » est « si le sol n'est pas mouillé, alors il ne pleut pas ». Considérons l'exemple suivant :S'il pleut, alors le sol est mouillé.
MétalogiqueLa métalogique est l'étude de la métathéorie de la logique. Alors que la logique étudie comment des systèmes logiques peuvent être utilisés pour construire un argument valide et correct, la métalogique concerne les vérités qui peuvent être dérivées des langages et des systèmes qui sont utilisés pour exprimer des vérités. Les objets de base de l'étude métalogique sont les langages formels des systèmes formels, et leurs interprétations.