Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Opérateur unitaireEn analyse fonctionnelle, un opérateur unitaire est un opérateur linéaire U d'un espace de Hilbert tel queUU = UU = Ioù U* est l'adjoint de U, et I l'opérateur identité. Cette propriété est équivalente à : U est une application d' dense et U préserve le produit scalaire ⟨ , ⟩. Autrement dit, pour tous vecteurs x et y de l'espace de Hilbert, ⟨Ux, Uy⟩ = ⟨x, y⟩ (ce qui entraîne que U est linéaire). D'après l'identité de polarisation, on peut remplacer « U préserve le produit scalaire » par « U préserve la norme » donc par « U est une isométrie qui fixe 0 ».
Borel functional calculusIn functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential The 'scope' here means the kind of function of an operator which is allowed.
C*-algèbreEn mathématiques, une C*-algèbre (complexe) est une algèbre de Banach involutive, c’est-à-dire un espace vectoriel normé complet sur le corps des complexes, muni d'une involution notée , et d'une structure d'algèbre complexe. Elle est également nommée algèbre stellaire. Les C*-algèbres sont des outils importants de la géométrie non commutative. Cette notion a été formalisée en 1943 par Israel Gelfand et Irving Segal. Les algèbres stellaires sont centrales dans l'étude des représentations unitaires de groupes localement compacts.
Opérateur de décalageLes opérateurs de décalage (en anglais : les shifts) sont des opérateurs linéaires qui interviennent en analyse fonctionnelle, une branche des mathématiques. Le plus souvent mentionné est l'opérateur de décalage unilatéral, un opérateur borné non normal particulier, sur un espace de Hilbert muni d'une base hilbertienne infinie dénombrable. Tout espace de Hilbert séparable de dimension infinie (sur K = R ou C) est de dimension hilbertienne dénombrable, c'est-à-dire qu'il est isomorphe à l'espace l(I) des suites de carré sommable à valeurs dans K, indexées par un ensemble I infini dénombrable, par exemple I = N ou Z.
Compact operator on Hilbert spaceIn the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments.
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.