État stationnaireEn physique, un procédé est dit à l'état stationnaire ou en régime stationnaire si les variables le décrivant ne varient pas avec le temps. Mathématiquement un tel état se définit par: quelle que soit propriété du système (significative dans la présente perspective). Un exemple de procédé stationnaire est un réacteur chimique dans une phase de production continue. Un tel système travaille à température, à concentrations (réactifs et produits) et à volume constants ; en revanche, la couleur ou la texture du milieu peuvent être non-significatives.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Cycle limiteDans le domaine des systèmes dynamiques, un cycle limite, ou cycle-limite sur un plan ou une variété bidimensionnelle est une trajectoire fermée dans l'espace des phases, telle qu'au moins une autre trajectoire spirale à l'intérieur lorsque le temps tend vers . Ces comportements s'observent dans certains systèmes non linéaires. Si toutes les trajectoires voisines approchent le cycle limite lorsque t , on parle de cycle limite stable ou attractif. Si en revanche cela se produit lorsque t , on parle de cycle limite instable ou non attractif.
Attracteur de HénonL'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Oscillateur de Van der PolL’oscillateur de Van der Pol est un système dynamique à temps continu à un degré de liberté. Il est décrit par une coordonnée x(t) vérifiant une équation différentielle faisant intervenir deux paramètres : une pulsation propre ω et un coefficient de non-linéarité ε. Lorsque ε = 0, cet oscillateur se réduit à un oscillateur harmonique pur. Il porte le nom de Balthasar van der Pol.
Condition initialeEn physique ou en mathématique, on définit comme conditions initiales les éléments nécessaires à la détermination de la solution complète et si possible unique d'un problème, éléments qui décrivent l'état du système à l'instant initial, c'est-à-dire l'état de départ. Plus formellement, on appelle « condition initiale » l'espace d'état d'un système étudié à l'instant initial. C'est ce qui permet de déterminer les coefficients des solutions des équations différentielles, par exemple les équations de mouvement des corps.
Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Limit setIn mathematics, especially in the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be at equilibrium.
Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.