Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.
Electromagnetic stress–energy tensorIn relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
Maxwell's equations in curved spacetimeIn physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime (where the metric may not be the Minkowski metric) or where one uses an arbitrary (not necessarily Cartesian) coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime.
Gravitation (livre)Gravitation est un ouvrage de référence en physique traitant de la relativité générale et de la loi de la gravitation qui en devient une conséquence. Écrit par Charles W. Misner, Kip S. Thorne et John Wheeler, il a été publié pour la première fois en 1973 par la W. H. Freeman and Company. Surnommé MTW, selon les premières lettres du nom de famille des auteurs, ce livre d'environ est régulièrement décrit comme étant la « Bible » de la relativité générale. En 2017, le livre est réédité chez Princeton University Press avec une nouvelle introduction et préface.
Système d'unités géométriquesEn relativité générale, le système d'unités géométriques est un système d'unités réduisant l'ensemble des grandeurs physiques à des longueurs ou des puissances de longueurs. Il vise à proposer une écriture plus simple des équations propres à la relativité générale en omettant deux constantes fondamentales : la vitesse de la lumière c et la constante de gravitation G, c'est-à-dire en considérant que les unités de masse et de temps en vigueur sont telles que ces quantités valent 1.
Metric connectionIn mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to: A connection for which the covariant derivatives of the metric on E vanish. A principal connection on the bundle of orthonormal frames of E. A special case of a metric connection is a Riemannian connection; there is a unique such which is torsion free, the Levi-Civita connection.
Gauge covariant derivativeIn physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity. If a physical theory is independent of the choice of local frames, the group of local frame changes, the gauge transformations, act on the fields in the theory while leaving unchanged the physical content of the theory.
Transformations de Lorentz du champ électromagnétiqueLes transformations de Lorentz du champ électromagnétique permettent de déterminer ce que devient le couple champ électrique - magnétique quand on passe d'un référentiel inertiel à un autre sans avoir à résoudre (à nouveau) les équations de Maxwell pour les déterminer. Les mesures réalisées par un observateur dépendent du référentiel depuis lequel elles sont réalisées. Par exemple, la vitesse d'un corps varie suivant le référentiel dans lequel on la mesure : la vitesse d'un bateau mesurée par rapport à la berge est différente de celle mesurée par rapport à l'eau du fleuve dans lequel il se déplace.