Four-currentIn special and general relativity, the four-current (technically the four-current density) is the four-dimensional analogue of the electric current density. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than three-dimensional space and time separately. Mathematically it is a four-vector, and is Lorentz covariant. Analogously, it is possible to have any form of "current density", meaning the flow of a quantity per unit time per unit area.
Invariance de LorentzL' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Équation de continuitévignette|mécanique des fluides En mécanique des fluides, le principe de conservation de la masse peut être décrit par l'équation de continuité sous plusieurs formes différentes : locale conservative (dérivée en temps normale), locale non conservative (la dérivée en temps suit la particule dans son mouvement), ou intégrale. Suivant les problèmes posés, c'est l'une ou l'autre de ces équations qui pourra être retenue, toutes étant équivalentes.
Tenseur antisymétriqueEn mathématiques et physique théorique, un tenseur est antisymétrique pour les indices i et j si son signe est interchangé lorsqu'on inverse 2 indices : Un tenseur antisymétrique est un tenseur possédant 2 indices pour lesquels il est antisymétrique. Si un tenseur change de signe dès que 2 indices quelconques sont inversés, alors ce tenseur est dit complètement antisymétrique et est aussi nommé forme différentielle. Un tenseur A qui est antisymétrique pour les indices i et j possède la propriété que sa contraction avec un tenseur B, symétrique pour les indices i et j, est identiquement nulle.
Four-gradientIn differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors. This article uses the (+ − − −) metric signature. SR and GR are abbreviations for special relativity and general relativity respectively. indicates the speed of light in vacuum. is the flat spacetime metric of SR.
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
Quadrivecteur potentielEn physique, le quadrivecteur potentiel ou quadri-potentiel ou encore champ de jauge, noté en général avec indice muet, est un vecteur à quatre composantes défini par où désigne le potentiel scalaire (aussi noté V), c la vitesse de la lumière dans le vide, et le potentiel vecteur qui dépend du choix du système de coordonnées. Par exemple, en coordonnées cartésiennes, ce dernier est représenté par , ce qui rend au total pour le quadri-vecteur . Il est utilisé notamment en relativité restreinte et en mécanique quantique relativiste.
ÉlectrodynamiqueL’électrodynamique est la discipline physique qui étudie et traite des actions dynamiques entre les courants électriques. On distingue l’électrodynamique classique et l’électrodynamique quantique. Tout phénomène d'électrodynamique classique est décrit par les équations de Maxwell. En 1820, André-Marie Ampère, après avoir été informé de l'expérience de Hans Christian Ørsted mettant en évidence l’interaction entre un courant électrique et un aimant, formalise mathématiquement, pour la première fois, les forces d'interaction entre aimants et courants et les forces mutuelles entre courants.
Sign conventionIn physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly described using different choices for the signs, as long as one set of definitions is used consistently. The choices made may differ between authors. Disagreement about sign conventions is a frequent source of confusion, frustration, misunderstandings, and even outright errors in scientific work.