Résumé
In mathematics, an integrating factor is a function that is chosen to facilitate the solving of a given equation involving differentials. It is commonly used to solve ordinary differential equations, but is also used within multivariable calculus when multiplying through by an integrating factor allows an inexact differential to be made into an exact differential (which can then be integrated to give a scalar field). This is especially useful in thermodynamics where temperature becomes the integrating factor that makes entropy an exact differential. An integrating factor is any expression that a differential equation is multiplied by to facilitate integration. For example, the nonlinear second order equation admits as an integrating factor: To integrate, note that both sides of the equation may be expressed as derivatives by going backwards with the chain rule: Therefore, where is a constant. This form may be more useful, depending on application. Performing a separation of variables will give This is an implicit solution which involves a nonelementary integral. This same method is used to solve the period of a simple pendulum. Integrating factors are useful for solving ordinary differential equations that can be expressed in the form The basic idea is to find some function, say , called the "integrating factor", which we can multiply through our differential equation in order to bring the left-hand side under a common derivative. For the canonical first-order linear differential equation shown above, the integrating factor is . Note that it is not necessary to include the arbitrary constant in the integral, or absolute values in case the integral of involves a logarithm. Firstly, we only need one integrating factor to solve the equation, not all possible ones; secondly, such constants and absolute values will cancel out even if included. For absolute values, this can be seen by writing , where refers to the sign function, which will be constant on an interval if is continuous.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (10)
Concepts associés (3)
Méthode de variation des constantes
En mathématiques, et plus précisément en analyse, la méthode de variation des constantes (ou méthode de Lagrange) est une méthode de résolution des équations différentielles. Elle permet en particulier de déterminer les solutions d'une équation différentielle avec second membre, connaissant les solutions de l'équation homogène (c'est-à-dire sans second membre) associée. La méthode a été inventée par le mathématicien et physicien Pierre-Simon de Laplace, pour la résolution des équations différentielles linéaires.
Équation différentielle ordinaire
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équation différentielle linéaire
Une équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Cours associés (4)
ME-716: Similarity and Transport Phenomena in Fluid
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
MATH-106(f): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
MATH-105(a): Advanced analysis II
Etudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
Afficher plus