Explore l'intégration dans les espaces de fonctions, y compris les équations elliptiques, l'inégalité de Hlder, l'espace de Lorentz et l'inégalité de Hardy-Young.
Couvre les propriétés des espaces complets, y compris l'exhaustivité, les attentes, les incorporations, les sous-ensembles, les normes, l'inégalité de Holder et l'intégrabilité uniforme.
Introduit des ensembles et des fonctions convexes, en discutant des minimiseurs, des conditions d'optimalité et des caractérisations, ainsi que des exemples et des inégalités clés.