Concepts associés (59)
Heptagone
Un heptagone est un polygone à sept sommets, donc sept côtés et quatorze diagonales. La somme des angles internes d'un heptagone non croisé vaut . Un heptagone régulier est un heptagone dont tous les côtés sont égaux et dont tous les angles internes sont égaux. Il y en a trois : deux étoilés (les heptagrammes réguliers) et un convexe. C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'heptagone régulier ». L'heptagone régulier est le plus petit des polygones réguliers non constructibles à la règle et au compas.
Acutangle
En géométrie euclidienne, le terme acutangle qualifie un triangle ou un tétraèdre. vignette|alt=triangle équilatéral|Un triangle équilatéral est un triangle acutangle Un triangle acutangle (ou plus simplement triangle aigu) est un triangle dont tous les angles sont aigus, par opposition au triangle obtusangle comportant un angle obtus (ainsi que deux angles aigus), et au triangle rectangle dont un angle est droit et les deux autres, aigus.
Triacontagon
In geometry, a triacontagon or 30-gon is a thirty-sided polygon. The sum of any triacontagon's interior angles is 5040 degrees. The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}. One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°.
Medial triangle
In Euclidean geometry, the medial triangle or midpoint triangle of a triangle △ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of △ABC. Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle.
Lester's theorem
In Euclidean plane geometry, Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter lie on the same circle. The result is named after June Lester, who published it in 1997, and the circle through these points was called the Lester circle by Clark Kimberling. Lester proved the result by using the properties of complex numbers; subsequent authors have given elementary proofs, proofs using vector arithmetic, and computerized proofs.
Feuerbach point
In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach. Feuerbach's theorem, published by Feuerbach in 1822, states more generally that the nine-point circle is tangent to the three excircles of the triangle as well as its incircle.
Conjugué isogonal
En géométrie, le conjugué isogonal d'un point dans un triangle est le point où concourent les droites symétriques, par rapport aux bissectrices, des droites passant par chaque sommet et ce point. vignette Antiparallèle (mathématiques) Deux couples de droites (d, d) et (Δ, Δ') sont antiparallèles si les bissectrices des angles qu'ils forment ont même direction. Les angles de droites (d, Δ) et (Δ', d) sont égaux (modulo π). On dit que d''' est antiparallèle à d par rapport à (Δ, Δ').
Relations d'Euler dans le triangle
vignette| Les relations d'Euler dans le triangle sont des relations entre les rayons des cercles inscrit/exinscrits et circonscrit. Leonhard Euler les a publiées en 1767 , mais elles l'avaient déjà été par William Chappie en 1746. Notons qu'on désigne aussi par relation d'Euler la relation vectorielle reliant le centre de gravité, l'orthocentre et le centre du cercle circonscrit. Pour un triangle quelconque, on note O, I, I les centres respectifs des cercles circonscrit, inscrit, et exinscrit dans l'angle (par exemple), et R, r, r leurs rayons respectifs.
Triangle de Héron
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.
Théorème japonais pour les quadrilatères inscriptibles
thumb|upright=1.5|Quadrilatère inscrit dans un cercle En géométrie, le théorème japonais pour les quadrilatères dit que les centres des cercles inscrits des triangles d'un quadrilatère inscriptible sont les sommets d'un rectangle. En traçant les diagonales du quadrilatère, on obtient quatre triangles (chaque diagonale crée deux triangles). Les centres des cercles inscrits dans ces triangles forment un rectangle. Soit un quadrilatère inscriptible quelconque et soient les centres respectifs des cercles inscrits dans les triangles .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.