Résumé
En mathématiques, on qualifie de trivial un énoncé dont on juge la vérité évidente à la lecture, ou un objet mathématique dont on estime que l'existence va de soi et que son étude n'a pas d'intérêt ; il s'agit donc avant tout d'une notion subjective. L'adjectif trivial vient du latin trivialis, lui même dérivé du latin trivium qui désignait un carrefour à trois voies, par opposition à quadrivium qui désignait un carrefour à quatre voies. Au les sept arts libéraux sont définis et regroupés en deux familles qui reprennent ces mots en bas latin, en changeant leur sens initial : le trivium rassemble trois arts (la grammaire, la dialectique et la rhétorique) qui constituent le premier cycle des études universitaires, et le quadrivium en rassemble quatre (l'arithmétique, la musique, la géométrie et l'astronomie). En langage courant, « trivial » se dit de ce qui est « commun, rebattu, su de tout le monde, répété dans les écoles ». Par extension, cet adjectif peut avoir un sens péjoratif et être synonyme de « grossier » ou « vulgaire ». Les mathématiciens utilisent, en français comme en anglais, l'adjectif « trivial » dans le sens « évident », « simple », et par extension « sans grand intérêt ». Une propriété ou une affirmation sera ainsi dite « triviale » si elle répond évidemment à une définition ou aux conditions d'un problème, mais n'a qu'un intérêt intrinsèque mineur, ou si elle est d'une démonstration simple, ou si sa connaissance n'apporte rien. Le caractère trivial en mathématiques est une notion très subjective : ce qui est évident ou simple, donc trivial, pour l'expert d'un domaine donné peut être très complexe pour toute personne ne maîtrisant pas les concepts permettant de conclure à la trivialité d'une affirmation donnée. Ainsi une proposition mathématique, qualifiée de « triviale » par un professeur, n’apparaîtra parfois vraie à ses élèves qu’après un long travail ; ce n’est qu’ensuite que l'affirmation sera devenue triviale pour eux aussi.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.