Mesure de HaarEn mathématiques, une mesure de Haar sur un groupe localement compact est une mesure de Borel quasi-régulière non nulle invariante par translation à gauche. Autrement dit, pour toute partie borélienne B de G, et pour tout g dans G, on a : L'existence d'une mesure de Haar est assurée dans tout groupe localement compact. Elle est finie sur les parties compactes de G. De plus, toute mesure borélienne complexe invariante par translations à gauche s'écrit où est un nombre complexe.
Relation de JacobiIn mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product and the Lie bracket operation both satisfy the Jacobi identity.
Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Produit tensoriel de deux modulesLe produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.
Analyse harmonique (mathématiques)thumb|upright=1.2|Analyseur harmonique mécanique de Lord Kelvin datant de 1878. L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline.
Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.
Jean-Pierre SerreJean-Pierre Serre, né le à Bages (Pyrénées-Orientales), est un mathématicien français, considéré comme l’un des plus grands mathématiciens du . Il reçoit de nombreuses récompenses pour ses recherches, et est en particulier lauréat de la médaille Fields en 1954, du prix Balzan en 1985, de la médaille d'or du CNRS en 1987, du prix Wolf de mathématiques en 2000, et le premier lauréat du prix Abel en 2003. Jean-Pierre Serre est né en 1926 à Bages (Pyrénées-Orientales) d'Adèle et Jean Serre, pharmaciens, et passe son enfance à Vauvert où ils sont installés.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Algèbre associativevignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
Affine Lie algebraIn mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras.