Formule de Bretschneidervignette|256x256px| En géométrie, la formule de Bretschneider permet de calculer l'aire d'un quadrilatère non croisé : où, , sont les longueurs des côtés du quadrilatère, le demi-périmètre, et et deux angles opposés quelconques . Remarquons que puisque . Cette formule fonctionne pour un quadrilatère convexe ou concave (mais non croisé), non forcément inscriptible. Elle contient la formule de Brahmagupta de l'aire d'un quadrilatère inscriptible (cas ), ainsi que la formule de Héron de l'aire d'un triangle (cas ).
Trapèzethumb|Exemple de trapèze. Un trapèze est un quadrilatère possédant deux côtés opposés parallèles. Ces deux côtés parallèles sont appelés bases. Avec cette définition, les quadrilatères ABCD et ABDC de la figure sont tous deux des trapèzes (dont les côtés (AB) et (CD) sont parallèles). Certains auteurs imposent comme condition supplémentaire la convexité du quadrilatère, ce qui revient à exclure les « trapèzes croisés » tels que ABDC. Un quadrilatère convexe est un trapèze si et seulement s’il possède une paire d’angles consécutifs de somme égale à 180°, soit π radians.
Alignement (géométrie)vignette|Sur cette figure, les points a1,a2,a3 sont alignés, ainsi que les points b1,b2,b3. En revanche, les points a1,a2,b3 ne sont pas alignés. En géométrie, l’alignement est une propriété satisfaite par certains familles de points, lorsque ces derniers appartiennent collectivement à une même droite. Deux points étant toujours alignés en vertu du premier axiome d’Euclide, la notion d’alignement ne présente d’intérêt qu’à partir d’une collection de trois points.
Triangle isocèlevignette|upright|Un triangle isocèle. En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base. Dans un triangle isocèle, les angles adjacents à la base sont égaux. Un triangle équilatéral est un cas particulier de triangle isocèle, ayant ses trois côtés de même longueur.
Aire (géométrie)thumb|L'aire du carré vaut ici 4. En mathématiques, l'aire est une grandeur relative à certaines figures du plan ou des surfaces en géométrie dans l'espace. Le développement de cette notion mathématique est lié à la rationalisation du calcul de grandeur de surfaces agricoles, par des techniques d'arpentage. Cette évaluation assortie d'une unité de mesure est aujourd'hui plutôt appelée superficie. Informellement, l'aire permet d'exprimer un rapport de grandeur d'une figure relativement à une unité, par le biais de découpages et recollements, de déplacements et retournements et de passage à la limite par approximation.
Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
Inégalité triangulaireEn géométrie, l'inégalité triangulaire est le fait que, dans un triangle, la longueur d'un côté est inférieure à la somme des longueurs des deux autres côtés. Cette inégalité est relativement intuitive. Dans la vie ordinaire, comme dans la géométrie euclidienne, cela se traduit par le fait que la ligne droite est le plus court chemin : le plus court chemin d'un point A à un point B est d'y aller tout droit, sans passer par un troisième point C qui ne serait pas sur la ligne droite.
Distance geometryDistance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. More abstractly, it is the study of semimetric spaces and the isometric transformations between them. In this view, it can be considered as a subject within general topology. Historically, the first result in distance geometry is Heron's formula in 1st century AD.
Isosceles trapezoidIn Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure, or as a trapezoid whose diagonals have equal length. Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry.
Trigonométrie de WildbergerLa trigonométrie de Wildberger (dite aussi trigonométrie rationnelle car elle ne fait aucun recours aux nombres irrationnels) constitue une réécriture de la trigonométrie traditionnelle. Elle s’en distingue en évitant non seulement l’usage des fonctions trigonométriques classiques, mais même l’usage de nombres transcendants tels que π dans l’écriture des formules. Elle fut autopubliée en 2005 dans Divine Proportions: Rational Trigonometry to Universal Geometry par Norman Wildberger, Ph. D.