Bernhard RiemannGeorg Friedrich Bernhard Riemann, né le à Breselenz, royaume de Hanovre, mort le à Selasca, hameau de la commune de Verbania, royaume d'Italie, est un mathématicien allemand. Influent sur le plan théorique, il a apporté de nombreuses contributions importantes à la topologie, l'analyse, la géométrie différentielle et au calcul, certaines d'entre elles ayant permis par la suite le développement de la relativité générale. Bernhard Riemann est né à Breselenz, un village du royaume de Hanovre.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Espace de FinslerUn espace de Finsler est une variété différentielle possédant une métrique asymétrique locale, c'est-à-dire une sur le fibré tangent. Les variétés de Finsler sont donc une généralisation des variétés de Riemann. Le concept a été étudié par Paul Finsler en 1918. Élie Cartan y reconnaitra un (1933). Le lien avec le calcul des variations : la définition métrique mène « directement » à des raisonnements sur les géodésiques, comme solutions à des problèmes de recherches d'extrema. Finsler Geometry The Finsler G
Courburevignette|Le déplacement d'une Dictyostelium discoideum dont la couleur du contour est fonction de la courbure. Échelle : 5 μm ; durée : 22 secondes. Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle et un cercle un objet de courbure constante positive, valant 1/R (inverse du rayon) ; dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère est un objet à deux dimensions de courbure constante positive.
Hermann WeylHermann Weyl (), né le à Elmshorn et mort le à Zurich, est un mathématicien et physicien théoricien allemand du . Il fut le premier, dès 1918, à combiner la relativité générale avec l'électromagnétisme en développant la géométrie de Weyl (ou géométrie conforme) et en introduisant la notion de jauge. L'invariance de jauge est à la base du modèle standard et reste un ingrédient fondamental pour la physique théorique moderne. Ses recherches en mathématiques portèrent essentiellement sur la topologie, la géométrie et l'algèbre.
Gregorio Ricci-CurbastroGregorio Ricci-Curbastro (né le à Lugo, dans la province de Ravenne, en Émilie-Romagne et mort le à Bologne) est un mathématicien italien de la fin du et du début du . Spécialiste de la géométrie différentielle, il est l'un des pères du calcul tensoriel. Ricci-Curbastro étudia dès l'âge de seize ans la philosophie et les mathématiques à l'Université de Rome, publiant même un article sur les « Recherches de Fuchs sur les équations différentielles linéaires » ; après une période d'interruption, il les poursuivit à l’Université de Bologne (1872) et l’École normale supérieure de Pise dont il sortit diplômé (1875).
Tullio Levi-CivitaTullio Levi-Civita ( à Padoue, Italie – à Rome) est un mathématicien italien. Il est connu principalement pour son travail sur le calcul tensoriel et ses applications en théorie de la relativité. Il fut l'assistant de Gregorio Ricci-Curbastro, avec qui il inventa le calcul tensoriel. Ses travaux incluent aussi des articles fondamentaux en mécanique céleste (notamment sur le problème des trois corps) et l'hydrodynamique. Né à Padoue, Levi-Civita était le fils de Giacomo Levi-Civita, un avocat qui fut sénateur.
Géométrie elliptiqueUne géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .
Systole (mathématiques)Dans un espace métrique compact, la systole est la longueur minimale d'un lacet non contractile, c'est-à-dire d'une courbe fermée qu'on ne peut déformer continûment pour l'amener en un point. En géométrie des nombres, la systole d'un réseau dans un espace euclidien désigne la norme du plus petit vecteur non nul de ce réseau. Cette notion intervient en particulier dans le , également connu sous le nom de « critère de Mahler ». La systole est donc la longueur minimum d'un lacet représentant une classe non nulle d'homologie première du tore quotient du réseau.