George BooleGeorge Boole, né le à Lincoln (Royaume-Uni) et mort le à Ballintemple (Irlande), est un logicien, mathématicien et philosophe britannique. Il est le créateur de la logique moderne, fondée sur une structure algébrique et sémantique, que l'on appelle algèbre de Boole en son honneur. Il a aussi travaillé dans d'autres domaines mathématiques, des équations différentielles aux probabilités en passant par l'analyse. Autodidacte, il publia ses premiers travaux d'algèbre tout en exerçant son métier d'instituteur et de directeur d'école dans la région de Lincoln.
Prédicat (logique mathématique)En logique mathématique, un prédicat d'un langage est une propriété des objets du domaine considéré (l'univers du discours) exprimée dans le langage en question. Plus généralement cette propriété peut porter non seulement sur des objets (on peut préciser prédicat d'arité 1, à une place, monadique ou bien encore unaire), mais aussi sur des couples d'objets (on parle alors de prédicat binaire, ou d'arité 2, ou à deux places, ou encore de relation binaire), des triplets d'objets (prédicat ou relation ternaire ou d'arité 3 etc.
Formule atomiqueEn logique mathématique, une formule atomique ou atome est une formule qui ne contient pas de sous-formules propres. La structure d'une formule atomique dépend de la logique considérée, p. ex. en logique des propositions, les formules atomiques sont les variables propositionnelles. Les atomes sont les formules les plus simples dans un système logique et servent à construire les formules les plus générales.
ImprédicativitéL'imprédicativité est un terme du domaine des mathématiques, de la logique, de la théorie des ensembles et de la théorie des types. On dit qu'il y a imprédicativité « lorsqu'un objet parle de lui-même ». Une définition est imprédicative si l'objet défini intervient dans la définition elle-même. Le paradoxe de Russell est un célèbre exemple d'imprédicativité menant à une contradiction : il introduit « l'ensemble de tous les ensembles qui ne se contiennent pas eux-mêmes » (par « contiennent », on comprendra « éléments de ») En réaction à ce paradoxe et à d'autres Henri Poincaré et Bertrand Russell ont énoncé le « principe du cercle vicieux » ou de la pétition de principe.
Programme de HilbertLe programme de Hilbert est un programme créé par David Hilbert dans le but d'assurer les fondements des mathématiques. Les conceptions scientifiques de David Hilbert ont une grande influence sur les mathématiciens de son époque. Hilbert s'oppose fermement au pessimisme scientifique prôné en particulier par le physiologiste Emil du Bois-Reymond, pour qui il est des questions en sciences qui resteront toujours sans réponse, une doctrine connue sous le nom d'« Ignorabimus » (du latin ignoramus et ignorabimus : « Nous ne savons pas et nous ne saurons jamais »).
Wilhelm AckermannWilhelm Ackermann (1896-1962) est un mathématicien allemand, célèbre pour la fonction d'Ackermann (1925) qui est un exemple important de la théorie de la calculabilité. Sa thèse (1924) donne une preuve détaillée de la cohérence de l'. Il fut professeur dans le secondaire, à Burgsteinfurt de 1929 à 1948, puis à Lüdenscheid jusqu'à sa retraite en 1961. Il fut membre correspondant de l'Académie des sciences de Göttingen et professeur honoraire de l'université de Münster.
Théorie complèteEn logique mathématique, une théorie complète est une théorie qui est équivalente à un ensemble maximal cohérent de propositions ; ceci signifie qu'elle est cohérente et que toute extension propre ne l'est plus. Pour des théories logiques qui contiennent la logique propositionnelle classique, ceci équivaut à la condition que pour toute proposition φ du langage de la théorie, soit elle contient φ, soit elle contient sa négation ¬φ.
Formalism (philosophy of mathematics)In the philosophy of mathematics, formalism is the view that holds that statements of mathematics and logic can be considered to be statements about the consequences of the manipulation of strings (alphanumeric sequences of symbols, usually as equations) using established manipulation rules. A central idea of formalism "is that mathematics is not a body of propositions representing an abstract sector of reality, but is much more akin to a game, bringing with it no more commitment to an ontology of objects or properties than ludo or chess.
Paradoxe de SkolemEn logique mathématique et en philosophie analytique, le paradoxe de Skolem est une conséquence troublante du théorème de Löwenheim-Skolem en théorie des ensembles. Il affirme qu'une théorie des ensembles, comme ZFC, si elle a un modèle, a un modèle dénombrable, bien que l'on puisse par ailleurs définir une formule qui exprime l'existence d'ensembles non dénombrables. C'est un paradoxe au sens premier de ce terme : il va contre le sens commun, mais ce n'est pas une antinomie, une contradiction que l'on pourrait déduire dans la théorie.
Définition par récurrencevignette|4 étapes de la construction d'un flocon de Koch. Comme beaucoup d'autres fractales, cette courbe est définie par récurrence. En mathématiques, on parle de définition par récurrence pour une suite, c'est-à-dire une fonction définie sur les entiers positifs et à valeurs dans un ensemble donné. Une fonction est définie par récurrence quand, pour définir la valeur de la fonction en un entier donné, on utilise les valeurs de cette même fonction pour des entiers strictement inférieurs.