Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
Espace projectifEn mathématiques, un espace projectif est le résultat d'une construction fondamentale qui consiste à rendre homogène un espace vectoriel, autrement dit à raisonner indépendamment des proportionnalités pour ne plus considérer que des directions. Par exemple, l'espace projectif réel de dimension n, P(R),ou RPn, est l'ensemble des droites vectorielles ou des directions de R ; formellement, c'est le quotient de R{0} par la relation d'équivalence de colinéarité. On peut munir ces espaces projectifs de structures additionnelles pour en faire des variétés.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Topologievignette|Déformation continue d'une tasse avec une anse, en un tore (bouée). thumb|Un ruban de Möbius est une surface fermée dont le bord se réduit à un cercle. De tels objets sont des sujets étudiés par la topologie. La topologie est la branche des mathématiques qui étudie les propriétés d'objets géométriques préservées par déformation continue sans arrachage ni recollement, comme un élastique que l’on peut tendre sans le rompre.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Variété algébrique affineEn géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X. Ensemble algébrique Le point de vue le plus simple pour décrire une variété algébrique affine est l'ensemble des solutions d'un système d'équations polynomiales à coefficients dans un corps commutatif K.
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Topologie de ZariskiEn géométrie algébrique et en théorie des catégories, le terme topologie de Zariski peut désigner quatre notions proches : une certaine topologie définie sur une variété algébrique. Les fermés de cette topologie sont les ensembles algébriques ; une topologie définie de manière analogue sur le spectre premier d'un anneau commutatif ; une topologie définie sur un schéma, qui, localement, provient de la topologie de Zariski définie sur un spectre d'anneau ; une topologie de Grothendieck sur un site.