Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Explore la prédiction linéaire, les coefficients de prédiction, la minimisation de l'erreur quadratique moyenne et l'algorithme de Levinson-Durbin dans le traitement du signal.
Explore les fonctions de perte, la descente de gradient et l'impact de la taille des pas sur l'optimisation dans les modèles d'apprentissage automatique, en soulignant l'équilibre délicat requis pour une convergence efficace.
Couvre le concept d'inférence moyenne-carré-erreur et d'estimateurs optimaux pour les problèmes d'inférence en utilisant différents critères de conception.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.