Mathématiques financièresLes mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Intégrale d'Itōvignette|Tracé d'une trajectoire échantillon d'un processus de Wiener, ou mouvement brownien, B, ainsi que son intégrale d'Itô par rapport à lui-même. L'intégration par parties ou le lemme d'Itô montre que l'intégrale est égale à (B2 - t)/2. L'intégrale d'Itô, appelée en l'honneur du mathématicien Kiyoshi Itô, est un des outils fondamentaux du calcul stochastique. Elle a d'importantes applications en mathématique financière et pour la résolution des équations différentielles stochastiques.
Calcul stochastiqueLe calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).
Local volatilityA local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant (i.e. a trivial function of and ). Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.
Lemme d'ItōLe lemme d'Itō, ou formule d'Itō, est l'un des principaux résultats de la théorie du calcul stochastique, qui permet d'exprimer la différentielle d'une fonction d'un processus stochastique au cours du temps. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS). La formule d'Itō a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itō dans les années 1940.
Volatilité stochastiqueLa volatilité stochastique est utilisée dans le cadre de la finance quantitative, pour évaluer des produits dérivés, tels que des options. Le nom provient du fait que le modèle traite la volatilité du sous-jacent comme un processus aléatoire, fonction de variables d'états telles que le prix du sous-jacent, la tendance qu'a la volatilité, à moyen terme, à faire revenir le prix vers une valeur moyenne, la variance du processus de la volatilité, etc.
Heston modelIn finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process. The basic Heston model assumes that St, the price of the asset, is determined by a stochastic process, where , the instantaneous variance, is given by a Feller square-root or CIR process, and are Wiener processes (i.
Variation quadratiqueEn mathématiques, la variation quadratique est utilisée dans l'analyse des processus stochastiques, comme le mouvement brownien et autres martingales. La variation quadratique est un type de variation d'un processus. Si est un processus stochastique à valeurs réelles défini sur un espace probabilisé et avec un indice de temps qui parcourt les nombres réels positifs, sa variation quadratique est le processus, noté , défini par : où parcourt les subdivisions de l'intervalle et la norme de la subdivision est son pas.
Processus de WienerEn mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.