MonodromieLa monodromie est l'étude du comportement de certains objets mathématiques « lorsqu'on tourne autour d'une singularité ». Un premier aspect de ce phénomène se rencontre dans le domaine des fonctions complexes admettant plusieurs déterminations dans le plan complexe épointé, comme le logarithme ou les puissances rationnelles : suivre continument une détermination d'une telle fonction le long d'un lacet autour de l'origine conduit après un tour à obtenir une autre détermination.
Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Champ algébriqueIn mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth.
Jean LerayJean Leray, né le à Chantenay-sur-Loire (Loire-Inférieure) et mort le à La Baule, est un mathématicien français qui a travaillé à la fois sur les équations aux dérivées partielles, la mécanique des fluides et sur la topologie algébrique. Il passe sa jeunesse à Nantes et à Rennes, puis fait ses études à l'École normale supérieure et devient professeur à Nancy en 1936. Il effectue ses principaux travaux en topologie entre 1940 et 1945 alors qu'il est prisonnier de guerre en Autriche.
Éléments de géométrie algébriqueLes Éléments de géométrie algébrique, par Alexandre Grothendieck (rédigés avec la collaboration de Jean Dieudonné), ou EGA en abrégé, sont un traité inachevé de pages, en français, sur la géométrie algébrique, qui a été publié (en huit parties ou fascicules) entre 1960 et 1967 par l'Institut des hautes études scientifiques. Grothendieck tente d'y établir systématiquement les fondements de la géométrie algébrique, et y construit le concept des schémas, et le définit.
Deformation (mathematics)In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.
Algebraic spaceIn mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
Espace nucléaireEn mathématiques, et plus précisément en analyse, un espace nucléaire est un espace vectoriel topologique possédant certaines propriétés analogues à celles des espaces de dimension finie. Leur topologie peut être définie par une famille de semi-normes dont la taille des boules unités décroit rapidement. Les espaces vectoriels dont les éléments sont « lisses » en un certain sens sont souvent des espaces nucléaires ; un exemple typique est celui des fonctions régulières sur une variété compacte.