Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Pierre DelignePierre René, vicomte Deligne est un mathématicien belge, né le à Etterbeek dans la Région de Bruxelles-Capitale. Pierre René Deligne est diplômé de l'Université libre de Bruxelles en 1966, en ayant effectué une année de scolarité à l’école normale supérieure en 1965-1966. Il soutient une première thèse de doctorat en 1968 à Bruxelles. De 1968 à 1984, il est membre de l’Institut des hautes études scientifiques, où il assiste aux séminaires d’Alexandre Grothendieck qu'il appelle son « maître ».
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Site (mathématiques)En théorie des catégories, une branche des mathématiques, une topologie de Grothendieck est une structure sur une catégorie permettant de voir certains objets de comme les ensembles ouverts d'un espace topologique. Une catégorie munie d'une topologie de Grothendieck est appelée un site. Une topologie de Grothendieck axiomatise la notion de recouvrement d'un espace topologique par des ouverts. Cela permet de généraliser la définition de faisceaux, et leur cohomologie, à un site quelconque.
Nicolas BourbakiNicolas Bourbaki est un mathématicien imaginaire, sous le nom duquel un groupe de mathématiciens francophones, formé en 1935 à Besse (aujourd'hui Besse-et-Saint-Anastaise) en Auvergne sous l'impulsion d'André Weil, a commencé à écrire et à éditer des textes mathématiques à la fin des . L'objectif premier était la rédaction d'un traité d'analyse. Le groupe s'est constitué en association, lAssociation des collaborateurs de Nicolas Bourbaki, le . Sa composition a évolué avec un renouvellement constant de générations.
Catégorie abélienneEn mathématiques, les catégories abéliennes forment une famille de catégories qui contient celle des groupes abéliens. Leur étude systématique a été instituée par Alexandre Grothendieck pour éclairer les liens qui existent entre différentes théories cohomologiques, comme la cohomologie des faisceaux ou la cohomologie des groupes. Toute catégorie abélienne est additive. Une catégorie abélienne est une catégorie additive dans laquelle on peut additionner les flèches et définir pour toute flèche les notions de noyau, conoyau et .
Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
Henri Cartanvignette|Henri Cartan (à gauche) avec Peter Thullen à l'université de Fribourg en 1987, au anniversaire de Thullen Henri Cartan, né le à Nancy et mort le à Paris , est un mathématicien français. Il est le fils du mathématicien Élie Cartan et de Marie-Louise Bianconi. Il est couramment considéré comme l'un des mathématiciens français les plus influents de son époque. Il est connu pour ses travaux sur les fonctions de plusieurs variables complexes, la topologie (faisceaux, complexes d'Eilenberg-Mac Lane) et l'algèbre homologique.
Cohomologie de WeilUne cohomologie de Weil est une théorie cohomologique des variétés algébriques, à coefficients dans un corps, satisfaisant un certain jeu d'axiomes. La nécessité d'une telle théorie a été postulée par André Weil, à l'origine pour garantir une formule de Lefschetz. Weil avait suggéré que les conjectures qui portent son nom se déduiraient de l'existence d'une théorie cohomologique des variétés sur les corps finis, analogue à la théorie cohomologique à coefficients rationnels pour les variétés complexes.
Moduli of algebraic curvesIn algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on the restrictions applied to the classes of algebraic curves considered, the corresponding moduli problem and the moduli space is different. One also distinguishes between fine and coarse moduli spaces for the same moduli problem.