Algorithme de Strassenvignette|Algorithme de Strassen où sont représentés les matrices Ci,j ainsi que les 7 nouvelles matrices Mi En mathématiques, plus précisément en algèbre linéaire, l’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n, proposé par Volker Strassen en 1969. La complexité de l'algorithme est en , avec pour la première fois un exposant inférieur à celui de la multiplication naïve qui est en . Par contre, il a l'inconvénient de ne pas être stable numériquement.
Mathématiques puresvignette|Formules mathématiques Les mathématiques pures (ou mathématiques fondamentales) regroupent les activités de recherche en mathématiques motivée par des raisons autres que celles de l'application pratique. Les mathématiques pures reposent sur un ensemble d'axiomes et sur un système logique, détachés de l'expérience et de la réalité. Il n'est cependant pas rare que des théories développées sans objectif pratique soient utilisées plus tard pour certaines applications, comme la géométrie riemannienne pour la relativité générale.
CoefficientUn coefficient est un facteur constant, exprimé par un nombre ou par un symbole qui le représente, qui s’applique à une grandeur variable (grandeur physique ou variable mathématique). En physique par exemple, quand la vitesse d’un solide mobile est constante, la distance parcourue est proportionnelle à la durée du parcours, la vitesse étant le coefficient de proportionnalité à appliquer à une durée donnée pour obtenir la distance parcourue pendant ce temps.
Indefinite orthogonal groupIn mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1.
Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Opposé (mathématiques)En mathématiques, lopposé d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée additivement. Dans le cas réel, il s'agit du nombre qui, ajouté par x, donne 0. On le note –x. Par exemple : l’opposé de 7 est égal à –7 car 7 + (–7) = 0 l’opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0. Ainsi d’après le dernier exemple, –(–0,3) = 0,3. Plus généralement, si E est un ensemble muni d’une loi interne d’addition associative et commutative, l’opposé d’un élément x de E est le symétrique (s’il existe) de cet élément, et est noté en général –x.
Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Élément neutreEn mathématiques, plus précisément en algèbre, un élément neutre (ou élément identité) d'un ensemble pour une loi de composition interne est un élément de cet ensemble qui laisse tous les autres éléments inchangés lorsqu'il est composé avec eux par cette loi. Un magma possédant un élément neutre est dit unifère. Soit un magma. Un élément de est dit : neutre à gauche si ; neutre à droite si ; neutre s'il est neutre à droite et à gauche.
Changement de base (algèbre linéaire)En mathématiques, plus précisément en algèbre linéaire, une matrice de passage (ou encore matrice de changement de base) permet d'écrire des formules de changement de base pour les représentations matricielles des vecteurs, des applications linéaires et des formes bilinéaires. Soient K un corps commutatif, E un K-espace vectoriel de dimension finie n, et B, B' deux bases de E. Pour des raisons mnémotechniques, on qualifie B' de nouvelle base, B d'ancienne base.