Algèbre associativevignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
IndéterminéeExemple de polynôme à coefficients entiers, d'indéterminée . En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x.
Représentation de groupeEn mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
Espace vectoriel conjuguéEn algèbre linéaire, l'espace vectoriel conjugué d'un espace vectoriel complexe est un nouvel espace vectoriel obtenu en modifiant la définition du produit par les scalaires. Soit un espace vectoriel sur le corps C des nombres complexes. On appelle espace vectoriel conjugué de , l'ensemble E muni de la même opération d'addition + et du produit par les scalaires défini par : où désigne le conjugué du nombre complexe λ. Le triplet est également un espace vectoriel complexe, appelé conjugué de et de même dimension sur C.
Rayon spectralSoit un endomorphisme sur un espace de Banach complexe , on appelle rayon spectral de , et on note , le rayon de la plus petite boule fermée de centre 0 contenant toutes les valeurs spectrales de . Il est toujours inférieur ou égal à la norme d'opérateur de . En dimension finie, pour un endomorphisme de valeurs propres complexes , le rayon spectral est égal à . Par conséquent, pour toute norme matricielle N, c'est-à-dire toute norme d'algèbre sur (respectivement ) et pour toute matrice A dans (respectivement ), .
Ensemble d'arrivéeEn mathématiques, pour une application ou une fonctionSelon les sources, il y a distinction ou non entre les notions de fonction et dapplication'', voir Application_(mathématiques)#Fonction_et_application pour plus de détails. Ce qui est énoncé dans cet article est valable que la distinction soit faite ou non. donnée f : A → B, l'ensemble B est appelé l'ensemble d'arrivée (on dit parfois le but de f ou le codomaine''' de f). L'ensemble d'arrivée ne doit pas être confondu avec l' f(A) de f, qui est en général seulement un sous-ensemble de B.
NumPyNumPy est une bibliothèque pour langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux. Plus précisément, cette bibliothèque logicielle libre et open source fournit de multiples fonctions permettant notamment de créer directement un tableau depuis un fichier ou au contraire de sauvegarder un tableau dans un fichier, et manipuler des vecteurs, matrices et polynômes.
Max BornMax Born ( à Breslau, Empire allemand - à Göttingen, Allemagne de l'Ouest) est un physicien allemand. Physicien théoricien remarquable, il est principalement connu pour son importante contribution à la physique quantique. Il a été le premier à donner au carré du module de la fonction d'onde la signification d'une densité de probabilité de présence. Il a partagé le prix Nobel de physique de 1954, avec Walther Bothe, pour ses travaux sur la théorie des quanta.
Rotations and reflections in two dimensionsIn Euclidean geometry, two-dimensional rotations and reflections are two kinds of Euclidean plane isometries which are related to one another. A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L1. Then reflect P′ to its image P′′ on the other side of line L2. If lines L1 and L2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L1 and L2. I.e.
Circle groupIn mathematics, the circle group, denoted by or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers The circle group forms a subgroup of , the multiplicative group of all nonzero complex numbers. Since is abelian, it follows that is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure : This is the exponential map for the circle group.