Nombre négatifvignette|Thermomètre indiquant une température négative en degrés Fahrenheit. Un nombre négatif est un nombre réel qui est inférieur à zéro, comme −3 ou −π . La première apparition connue des nombres négatifs est dans Les Neuf Chapitres sur l'art mathématique (Jiǔzhāng Suànshù), dont les versions qui nous sont parvenues datent du début de la dynastie Han (), sans qu'on puisse dater les versions originales, sans doute plus anciennes. Les Neuf Chapitres utilise des bâtons de numération rouges pour les nombres positifs et des noirs pour les négatifs.
Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Groupe localement compactUn groupe localement compact est, en mathématiques, un groupe topologique dont l'espace topologique sous-jacent est localement compact. Ces propriétés permettent de définir une mesure, dite mesure de Haar, et donc de calculer des intégrales et des moyennes ou encore une transformée de Fourier. Ces propriétés à la croisée de l'algèbre générale, de la topologie et de la théorie de la mesure sont particulièrement intéressantes, notamment pour leurs applications en physique.
Numerical methodIn numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Let be a well-posed problem, i.e. is a real or complex functional relationship, defined on the cross-product of an input data set and an output data set , such that exists a locally lipschitz function called resolvent, which has the property that for every root of , .
Abus de notationEn mathématiques, un abus de notation est l'utilisation de symboles hors de leur usage d'origine de façon à résumer une expression, au risque de contrevenir à un formalisme en cours, voire d'obtenir une expression ambiguë. Par exemple, la notation , utilisée au pour désigner l'unité imaginaire, est abusive dans le formalisme actuel où le symbole radical est réservé aux nombres réels positifs. Un abus de notation courant est l'identification entre deux objets mathématiques différents, c'est-à-dire l'utilisation de l'un pour l'autre.
Logarithme décimalthumb|upright=2|Représentation graphique du logarithme décimal dans un repère orthogonal Le logarithme décimal ou log ou simplement log (parfois appelé logarithme vulgaire) est le logarithme de base dix. Il est défini pour tout réel strictement positif x. Le logarithme décimal est la fonction continue qui transforme un produit en somme et qui vaut 1 en 10. Le logarithme décimal est la fonction réciproque de la fonction : La norme ISO 80000-2 indique que log devrait être noté lg, mais cette notation est rarement utilisée.
Mathématiques élémentairesLes mathématiques élémentaires regroupent des notions et techniques mathématiques abordées dans l'enseignement scolaire primaire et secondaire. L'expression est citée par Michelet en 1820. Le terme s'entend aujourd'hui comme une catégorie didactique, connotée par les divers sens de l'adjectif « élémentaire », en particulier l'acquisition des rudiments et l'idée de simplicité. Le détail des savoirs qui constituent les mathématiques élémentaires varie donc d'un pays à l'autre et fluctue aussi au gré des réformes.
Développement décimal de l'unitéEn mathématiques, le développement décimal périodique qui s'écrit 0,999..., que l'on dénote encore par ou ou , représente un nombre réel dont on peut montrer que c'est le nombre 1. En d'autres termes, les deux notations 0,999... et 1 sont deux notations différentes pour le même nombre. Les démonstrations mathématiques de cette identité ont été formulées avec des degrés variés de rigueur mathématique, et selon les préférences relatives à la définition des nombres réels, les hypothèses sous-jacentes, le contexte historique et le public visé.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.