Résumé
Charles Gustave Jacob Jacobi, ou Carl Gustav Jakob Jacobi ( - ), est un mathématicien allemand surtout connu pour ses travaux sur les intégrales elliptiques, les équations aux dérivées partielles et leur application à la mécanique analytique. Né à Potsdam et issu d'une famille juive assimilée, son père est le banquier personnel du roi de Prusse Frédéric-Guillaume III et sa mère, née Rachel Lehmann, s'occupe du train de vie de la maison. Il étudie à l'université de Berlin, où il obtient son doctorat en 1825, à peine âgé de 21 ans. Sa thèse est une discussion analytique de la théorie des fractions. En 1829, il devient professeur de mathématiques à l'université de Königsberg, et ce jusqu'en 1842. Il fait une dépression et voyage en Italie en 1843. À son retour, il déménage à Berlin où il vit comme pensionnaire royal jusqu'à sa mort par variole. Il est le frère du physicien Moritz von Jacobi, découvreur de la galvanoplastie. Jacobi a écrit un traité classique sur les fonctions elliptiques, d'une importance capitale en physique mathématique pour l'intégration des équations du second ordre tirées de la conservation de l'énergie cinétique. En effet, dans les trois cas où les équations du mouvement, mises sous forme rotationnelle, sont intégrables : pendule ; dans un champ gravitationnel ; et corps tournant librement, les solutions s'expriment explicitement à l'aide des fonctions elliptiques. Jacobi est aussi le premier mathématicien à appliquer les fonctions elliptiques à la théorie des nombres, prouvant par exemple le théorème des nombres polygonaux annoncé sans preuve par Fermat. Il donne de nouvelles preuves de la loi de réciprocité quadratique, et y apporte des généralisations ; pour ce faire, il introduit ce qui aujourd'hui est connu sous le nom de . La fonction thêta de Jacobi, si fréquemment appliquée dans l'étude des séries hypergéométriques, porte son nom. Il en a donné l'équation fonctionnelle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.