Infix notationInfix notation is the notation commonly used in arithmetical and logical formulae and statements. It is characterized by the placement of operators between operands—"infixed operators"—such as the plus sign in 2 + 2. Binary relations are often denoted by an infix symbol such as set membership a ∈ A when the set A has a for an element. In geometry, perpendicular lines a and b are denoted and in projective geometry two points b and c are in perspective when while they are connected by a projectivity when Infix notation is more difficult to parse by computers than prefix notation (e.
Notation polonaise inversethumb|Exemple d'utilisation de la pile en RPN La notation polonaise inverse (NPI) (en anglais RPN pour Reverse Polish Notation), également connue sous le nom de notation post-fixée, permet d'écrire de façon non ambiguë les formules arithmétiques sans utiliser de parenthèses. Dérivée de la notation polonaise présentée en 1924 par le mathématicien polonais Jan Łukasiewicz, elle s’en différencie par l’ordre des termes, les opérandes y étant présentés avant les opérateurs et non l’inverse.
Opérateur (informatique)En programmation informatique, un opérateur est une fonction spéciale dont l'identificateur s'écrit généralement avec des caractères non autorisés pour l'identificateur des fonctions ordinaires. Il s'agit souvent des équivalents aux opérateurs mathématiques pour un langage de programmation. Les opérateurs peuvent effectuer des opérations arithmétiques, booléennes ou agir sur des chaînes de caractères. Contrairement aux fonctions, les opérateurs fournissent souvent les opérations primitives du langage.
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.
BracketA bracket, as used in British English, is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. Typically deployed in symmetric pairs, an individual bracket may be identified as a 'left' or 'right' bracket or, alternatively, an "opening bracket" or "closing bracket", respectively, depending on the directionality of the context. There are four primary types of brackets.
Opération (mathématiques)En mathématiques, une opération est un processus visant à obtenir un résultat à partir d'un ou plusieurs objets appelés opérandes. L'écriture d'une opération implique en général l'utilisation d'un symbole spécifique appelé opérateur. En arithmétique, les quatre opérations élémentaires (addition, soustraction, multiplication et division) sont suivies par le carré, le cube et plus généralement les opérations puissance, la racine carrée, l'exponentiation, la factorielle...
Expression (mathématiques)In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context. Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax. Many authors distinguish an expression from a formula, the former denoting a mathematical object, and the latter denoting a statement about mathematical objects.
Notation (mathématiques)On utilise en mathématiques un ensemble de notations pour condenser et formaliser les énoncés et les démonstrations. Ces notations se sont dégagées peu à peu au fil de l'histoire des mathématiques et de l’émergence des concepts associés à ces notations. Elles ne sont pas totalement standardisées. Quand deux traductions d'une notation sont données, l'une est la traduction mot à mot et l'autre est la traduction naturelle. Le présent article traite des notations mathématiques latines.
Notations infixée, préfixée, polonaise et postfixéeLes notations infixée (ou infixe), préfixée (ou préfixe) et postfixée (ou postfixe) sont des formes d'écritures d'expressions algébriques qui se distinguent par la position relative qu'y prennent les opérateurs et leurs opérandes. Un opérateur est écrit avant ses opérandes en notation préfixée, entre ses opérandes en notation infixée et après ses opérandes en notation postfixée. La notation infixée n'a de sens que pour les opérateurs prenant exactement deux opérandes. C'est la notation la plus courante des opérateurs binaires en mathématiques.
ExponentiationEn mathématiques, l’exponentiation est une opération binaire non commutative qui étend la notion de puissance d'un nombre en algèbre. Elle se note en plaçant l'un des opérandes en exposant (d'où son nom) de l'autre, appelé base. Pour des exposants rationnels, l'exponentiation est définie algébriquement de façon à satisfaire la relation : Pour des exposants réels, complexes ou matriciels, la définition passe en général par l'utilisation de la fonction exponentielle, à condition que la base admette un logarithme : L'exponentiation ensembliste est définie à l'aide des ensembles de fonctions : Elle permet de définir l'exponentiation pour les cardinaux associés.