Algèbre de CliffordEn mathématiques, l'algèbre de Clifford est un objet d'algèbre multilinéaire associé à une forme quadratique. C'est une algèbre associative sur un corps, permettant un type de calcul étendu, englobant les vecteurs, les scalaires et des « multivecteurs » obtenus par produits de vecteurs, et avec une règle de calcul qui traduit la géométrie de la forme quadratique sous-jacente. Le nom de cette structure est un hommage au mathématicien anglais William Kingdon Clifford.
BivecteurEn algèbre, le terme de bivecteur désigne un tenseur antisymétrique d'ordre 2, c'est-à-dire une quantité X pouvant s'écrire où les quantités ω sont des formes linéaires et le signe désigne le produit extérieur. Un bivecteur peut être vu comme une application linéaire agissant sur les vecteurs et les transformant en formes linéaires. Les coefficients X_ab peuvent être vus comme formant une matrice antisymétrique. Les bivecteurs sont abondamment utilisés en relativité générale, où plusieurs tenseurs peuvent être reliés à des bivecteurs.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
William Kingdon CliffordWilliam Kingdon Clifford (né à Exeter le - mort dans l'île de Madère le ) est un mathématicien et philosophe anglais. Il est le père avec Hermann Grassmann de l'algèbre géométrique, qui est un cas particulier de l'algèbre de Clifford. Il est aussi le premier à envisager que la gravitation puisse être modélisée par un espace de courbure variable. En philosophie, il développe le concept de « substance mentale ». William Clifford naît à Exeter et suit sa scolarité dans cette ville, dans une école privée.
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Algèbre symétriqueEn mathématiques, l'algèbre symétrique est une algèbre sur un corps associative, commutative et unifère utilisée pour définir des polynômes sur un espace vectoriel. L'algèbre symétrique est un outil important dans la théorie des algèbres de Lie et en topologie algébrique dans la théorie des classes caractéristiques. Soit E un espace vectoriel, l'algèbre symétrique de E, notée, S (E) ou Sym (E) est l'algèbre quotient de l'algèbre tensorielle T (E) par l'idéal bilatère I (E) engendré par les éléments où u et v sont des éléments de E.
Outer productIn linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
Algèbre géométrique (structure)Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).
Dérivée extérieureEn mathématiques, la dérivée extérieure, opérateur de la topologie différentielle et de la géométrie différentielle, étend le concept de la différentielle d'une fonction aux formes différentielles de degré quelconque. Elle permet de définir les formes différentielles fermées et exactes. Elle est importante dans la théorie de l'intégration sur les variétés, et elle est la différentielle employée pour définir la cohomologie de De Rham et celle d'Alexander-Spanier. Sa forme actuelle fut inventée par Élie Cartan.
Dérivation (algèbre)En algèbre, le terme dérivation est employé dans divers contextes pour désigner une application vérifiant l'identité de Leibniz. Selon le contexte, il peut s'agir, entre autres, d'une application additive définie sur un anneau A à valeurs dans un -module, ou bien d'un endomorphisme d'une algèbre unitaire sur un anneau unitaire. Cette notion est en particulier vérifiée par l'opérateur de dérivation d'une fonction (de variable réelle, par exemple); elle en est une généralisation utilisée en géométrie algébrique et en calcul différentiel sur les variétés (par exemple pour définir le crochet de Lie).