Terme (logique)Un terme est une expression de base du calcul des prédicats, de l'algèbre, notamment de l'algèbre universelle, et du calcul formel, des systèmes de réécriture et de l'unification. C'est l'objet produit par une analyse syntaxique. Sa principale caractéristique est d'être homogène (il n'y a que des opérations de base et pas d'opérations logiques) et de décrire l'agencement des opérations de base. Un terme est parfois appelé une formule du premier ordre.
Objet libreEn mathématiques, la notion d'objet libre est l'un des concepts de base de l'algèbre générale. Elle appartient à l'algèbre universelle, car elle s'applique à tous les types de structures algébriques (avec des opérations finitaires). Elle se formule plus généralement dans le langage de la théorie des catégories : le foncteur « objet libre » est l'adjoint à gauche du foncteur d'oubli. Des exemples d'objets libres sont les groupes libres, les groupes abéliens libres, les algèbres tensorielles...
Magma (algèbre)En mathématiques, un magma est une des structures algébriques utilisées en algèbre générale. Un magma est par définition un ensemble muni d'une loi de composition interne. Un magma est un ensemble muni d'une loi de composition interne , noté alors ou simplement . Aucun axiome n'est imposé. La loi de composition peut être notée additivement, multiplicativement, mais aussi sans aucun signe, par simple juxtaposition.
Algèbre universelleL'algèbre universelle est la branche de l'algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière uniforme les morphismes, les sous-structures (sous-groupes, sous-monoïdes, sous-anneaux, sous-espaces vectoriels, etc.), les quotients, les produits et les objets libres pour ces structures.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Structure algébriqueEn mathématiques, une structure algébrique est définie axiomatiquement par une ou plusieurs opérations sur un ensemble (dites internes), éventuellement muni d’autres opérations (externes) dépendant d’autres ensembles, toutes ces opérations satisfaisant certaines relations telles que l’associativité, la commutativité ou la distributivité. La structure de groupe qui émerge progressivement au , avec une seule opération interne et quelques propriétés se formalise au début du avec une kyrielle de structures d’algèbre générale moins restrictives (monoïde) ou au contraire enrichies par une seconde opération (anneau, corps, algèbre de Boole.