Nombre de LahEn mathématiques, les nombres de Lah, établis par , permettent d’exprimer les factorielles croissantes en fonction des factorielles décroissantes et réciproquement. Les nombres de Lah (signés) L(n, k) () sont définis par : avec la factorielle croissante et la factorielle décroissante, d’où : On montre (voir section #Expression directe ci-dessous) que L(n, k) a pour signe (-1). De même que pour les nombres de Stirling de première espèce, la notation de Karamata–Knuth désigne la version non signée des nombres de Lah () : d’où : avec (symbole de Kronecker).
Nombre harmoniqueEn mathématiques, le n-ième nombre harmonique est la somme des inverses des n premiers entiers naturels non nuls : Ce nombre rationnel est aussi égal à n fois l'inverse de la moyenne harmonique de ces entiers, ainsi qu'à la n-ième somme partielle de la série harmonique. Les nombres harmoniques ont été étudiés pendant l'Antiquité et sont importants dans plusieurs domaines de la théorie des nombres. Ils apparaissent dans de nombreux problèmes d'analyse combinatoire.
Stirling polynomialsIn mathematics, the Stirling polynomials are a family of polynomials that generalize important sequences of numbers appearing in combinatorics and analysis, which are closely related to the Stirling numbers, the Bernoulli numbers, and the generalized Bernoulli polynomials. There are multiple variants of the Stirling polynomial sequence considered below most notably including the Sheffer sequence form of the sequence, , defined characteristically through the special form of its exponential generating function, and the Stirling (convolution) polynomials, , which also satisfy a characteristic ordinary generating function and that are of use in generalizing the Stirling numbers (of both kinds) to arbitrary complex-valued inputs.
Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
Calcul ombralEn mathématiques, le calcul ombral est le nom d'un ensemble de techniques de calcul formel qui, avant les années 1970, était plutôt appelé calcul symbolique. Il s'agit de l'étude des similarités surprenantes entre certaines formules polynomiales a priori non reliées entre elles, et d'un ensemble de règles de manipulation (au demeurant assez peu claires) pouvant être utilisées pour les obtenir (mais non les démontrer).
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Nombre de BernoulliEn mathématiques, les nombres de Bernoulli, notés B (ou parfois b pour ne pas les confondre avec les polynômes de Bernoulli ou avec les nombres de Bell), constituent une suite de nombres rationnels.
Suite de ShefferEn mathématiques, et plus précisément en analyse combinatoire, une suite de Sheffer, nommée d'après Isador M. Sheffer, est une suite de polynômes satisfaisant à des conditions permettant le calcul ombral. Soit p une suite de polynômes (de variable x) telle que deg(pn) = n. On définit un opérateur linéaire Q par : Q p(x) = np(x) ; la famille des p étant une base, ceci définit Q pour tous les polynômes.
Tableau triangulairedroite|vignette|Construction du triangle de Bell. En mathématiques et en informatique, un tableau triangulaire de nombres, ou de polynômes est une suite doublement indexée dans laquelle chaque ligne est aussi longue que son ordre. Dans de nombreux cas, il s'agit d'une suite définie pour les entiers vérifiant . La ligne de rang n est alors le n + 1-uplet , et la colonne de rang k est la suite . Parmi les exemples notables, on peut citer : Le triangle de Bell, dont les termes dénombrent certaines partitions d'un ensemble.