Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Couvre l'estimation de la densité du noyau axée sur la sélection de la bande passante, la malédiction de la dimensionnalité, le compromis entre les biais et les modèles paramétriques et non paramétriques.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Couvre la régression non paramétrique à l'aide de techniques d'estimation basées sur le noyau pour modéliser des relations complexes entre les variables.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.