QuasiperiodicityQuasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpredictability that does not lend itself to precise measurement. It is different from the mathematical concept of an almost periodic function, which has increasing regularity over multiple periods. Climate oscillations that appear to follow a regular pattern but which do not have a fixed period are called quasiperiodic.
Fréquence propreLa fréquence propre d'un système est la fréquence à laquelle oscille ce système lorsqu'il est en évolution libre, c'est-à-dire sans force excitatrice extérieure ni forces dissipatives (frottements ou résistances par exemple). Cette notion est fondamentale pour comprendre les phénomènes d'excitation, d'oscillation et de résonance. Elle est largement utilisée dans tous les domaines de la physique et trouve des applications concrètes dans la conception des horloges, des instruments de musique et en génie parasismique.
Self-oscillationSelf-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefore distinct from forced and parametric resonators, in which the power that sustains the motion must be modulated externally. In linear systems, self-oscillation appears as an instability associated with a negative damping term, which causes small perturbations to grow exponentially in amplitude.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Structural stabilityIn mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself.
AéroélasticitéL’aéroélasticité étudie les vibrations des structures élastiques dans un écoulement d'air. Une structure souple comme une aile d'avion ou un grand pont comme celui de Millau, peut se mettre à vibrer à cause de l'écoulement d'air. Celui-ci est dû à la vitesse de l'avion ou bien au vent dans le cas des ouvrages de génie civil. Les causes de ces vibrations se séparent en deux grandes familles : les vibrations induites par les variations dans le temps de la vitesse de l'écoulement, présentes même lorsque la structure est immobile.
Pendule doubleEn mécanique, on désigne par pendule double un pendule à l'extrémité duquel on accroche un autre pendule. Son évolution est généralement chaotique. vignette Le pendule est constitué de deux tiges de longueur et , de masse nulle et deux masses et . L'énergie cinétique vaut : où est l'angle par rapport à la verticale et la vitesse du pendule . L'énergie potentielle vaut : ( étant l'altitude de la masse ), ou Le lagrangien vaut donc : soit En appliquant les équations de Lagrange, on obtient les équations du mouvement : (1) vignette|Illustration de la sensibilité aux conditions initiales avec trois pendules doubles aux conditions de départ très proches.
Stroboscopevignette|Rebonds d'un ballon capturés au stroboscope à par seconde. Un stroboscope est une source de lumière intermittente. Par un dispositif mécanique ou électronique, on produit une alternance de phases lumineuses (flashs) et de phases obscures. Les ancêtres du stroboscope, comme le phénakistiscope du belge Joseph Plateau (inventeur aussi du stroboscope), 1836, sont communs avec ceux du cinématographe et de la caméra. Le mot vient du grec « στρόβος » (« strobos », qui signifie « tourbillon ») et « σκοπεῖν » (« skopein », signifiant « regarder, voir »).
Torsional vibrationTorsional vibration is the angular vibration of an object - commonly a shaft - along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings, where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.
Injection lockingInjection locking and injection pulling are the frequency effects that can occur when a harmonic oscillator is disturbed by a second oscillator operating at a nearby frequency. When the coupling is strong enough and the frequencies near enough, the second oscillator can capture the first oscillator, causing it to have essentially identical frequency as the second. This is injection locking. When the second oscillator merely disturbs the first but does not capture it, the effect is called injection pulling.