Extrapolation de RichardsonEn analyse numérique, le procédé d'extrapolation de Richardson est une technique d'accélération de la convergence. Il est ainsi dénommé en l'honneur de Lewis Fry Richardson, qui l'a popularisé au début du . Les premières utilisations remontent à Huygens en 1654 et Takebe Kenkō en 1723, pour l'évaluation numérique de π. Ce procédé est notamment utilisé pour définir une méthode numérique d'intégration : la méthode de Romberg, accélération de la méthode des trapèzes.
Accélération de suiteEn mathématiques, laccélération de suite est une méthode de transformation de suites ou de série numérique visant à améliorer la vitesse de convergence d'une série. Des techniques d'accélération sont souvent utilisées en analyse numérique, afin d'améliorer la rapidité de méthodes d'intégration numérique ou obtenir des identités sur des fonctions spéciales. Par exemple, la transformation d'Euler appliquée à la série hypergéométrique permet de retrouver plusieurs identités connues.
Delta-2Delta-2 est un procédé d'accélération de la convergence de suites en analyse numérique, popularisé par le mathématicien Alexander Aitken en 1926. C'est l'un des algorithmes d'accélération de la convergence les plus populaires du fait de sa simplicité et de son efficacité. Une première forme de cet algorithme a été utilisée par Seki Kōwa (fin du ) pour calculer une approximation de π par la méthode des polygones d'Archimède.
Extrapolation (mathématiques)En mathématiques, l'extrapolation est le calcul d'un point d'une courbe dont on ne dispose pas d'équation, à partir d'autres points, lorsque l'abscisse du point à calculer est au-dessus du maximum ou en dessous du minimum des points connus. En dehors de cette particularité, les méthodes sont les mêmes que pour l'interpolation. C'est, d'autre part, une méthode développée par Norbert Wiener en traitement du signal pour la prédiction. Le choix de la méthode d'extrapolation dépend de la connaissance a priori de la méthode de génération des données.
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.