Set functionIn mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning.
Outcome (probability)In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible outcomes that make up our sample space are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails".
Mesure de probabilitévignette|300x300px| Dans de nombreux cas, la physique statistique utilise des mesures de probabilité, mais toutes les mesures qu'elle utilise ne sont pas des mesures de probabilité. En mathématiques, une mesure de probabilité est une fonction à valeurs réelles définie sur un ensemble d'événements dans un espace de probabilité qui satisfait les propriétés de mesure telles que la -additivité. La différence entre une mesure de probabilité et la notion plus générale de mesure (qui inclut des concepts tels que l'aire ou le volume) est qu'une mesure de probabilité doit attribuer la valeur 1 à tout l'espace de probabilité.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Événement élémentaireEn théorie des probabilités, on appelle événement élémentaire un ensemble de l'univers (un évènement) constitué d'un seul élément. Par exemple dans un jeu de carte classique de 52 cartes, tirer le roi de cœur est un événement élémentaire car le paquet de carte ne contient qu'un seul roi de cœur. Supposons qu'une tribu contienne tous les événements élémentaires ; elle contient alors toutes les parties finies ou dénombrables de , et chacune de ces parties peut s'écrire sous la forme : La réunion étant disjointe, cette relation permet de déterminer la probabilité de tout événement à partir des probabilités des événements élémentaires constituant .
Variables indépendantes et identiquement distribuéesvignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Presque sûrementvignette|alt=Illustration d'un évènement négligeable|Illustration du concept : l'évènement où la fléchette atteint exactement le point central de la cible est de probabilité 0. Autrement dit, l'évènement où la fléchette n'atteint pas le point central de la cible est presque sûr. En théorie des probabilités, un évènement est dit presque sûr s'il a une probabilité de un. En d'autres mots, l'ensemble des cas où l'évènement ne se réalise pas est de probabilité nulle.