Paramètre de formevignette|La loi Gamma est régie par deux paramètres de formes : k et θ. Un changement d'un de ces paramètres ne change pas seulement la position ou l'échelle de la distribution, mais également sa forme. Dans la théorie des probabilités et en statistiques, un paramètre de forme est un type de paramètre régissant une famille paramétrique de lois de probabilité. Un paramètre de forme est un paramètre d'une loi de probabilité qui n'est pas un paramètre affine, donc ni un paramètre de position ni un paramètre d'échelle.
Univariate distributionIn statistics, a univariate distribution is a probability distribution of only one random variable. This is in contrast to a multivariate distribution, the probability distribution of a random vector (consisting of multiple random variables). One of the simplest examples of a discrete univariate distribution is the discrete uniform distribution, where all elements of a finite set are equally likely. It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc.
Compound Poisson distributionIn probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution. Suppose that i.e., N is a random variable whose distribution is a Poisson distribution with expected value λ, and that are identically distributed random variables that are mutually independent and also independent of N.
Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Fonction caractéristique (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.
Méthode de rejetLa méthode du rejet est une méthode utilisée dans le domaine des probabilités. La méthode de rejet est utilisée pour engendrer indirectement une variable aléatoire , de densité de probabilité lorsqu'on ne sait pas simuler directement la loi de densité de probabilité (c'est le cas par exemple si n'est pas une densité classique, mais aussi pour la loi de Gauss). Soit un couple de variables aléatoires indépendantes tirées selon une loi uniforme, i.e. est un point tiré uniformément dans le carré unité.
Loi de WeibullEn théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Renewal theoryRenewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times. A renewal process has asymptotic properties analogous to the strong law of large numbers and central limit theorem.
Fonction gamma incomplèteEn analyse mathématique, il existe plusieurs définitions de fonctions gamma incomplètes : pour un paramètre complexe a de partie réelle strictement positive, La dérivée de la fonction gamma incomplète Γ(a, x) par rapport à x est l'opposée de l'intégrande de sa définition intégrale : La dérivée par rapport au paramètre a est donnée par et la dérivée seconde par où la fonction T(m, a, x) est un cas particulier de la Ce cas particulier possède des propriétés internes de fermeture qui lui sont propres parce qu'
Abraham de MoivreAbraham de Moivre, né Abraham Moivre (1667, Vitry-le-François – 1754, Londres) est un mathématicien français. Fils d'un père médecin, Abraham Moivre appartient à une famille protestante aisée. Il est cependant scolarisé chez les Pères de la Doctrine chrétienne de Vitry. À l'âge de onze ans, ses parents l'envoient à l'académie protestante de Sedan, où il étudie le grec sous la férule de Du Rondel. En dépit de l'édit de Nantes, l'académie protestante de Sedan est supprimée en 1682 et de Moivre est contraint d'étudier la logique à Saumur jusqu'en 1684.