Explore le théorème de Bayes pour la détection de pièces défectueuses, les variables aléatoires discrètes et les fonctions de distribution, avec des exemples pratiques et des exercices.
Couvre les propriétés et la construction des processus de Poisson à partir de variables aléatoires d'i.i.d. Exp(X), en soulignant l'importance du taux de processus et des distributions de temps de saut.
Couvertures Modèles linéaires généralisés, probabilité, déviance, fonctions de liaison, méthodes d'échantillonnage, régression de Poisson, surdispersion et modèles de régression alternatifs.
Explore la théorie et les applications des extrêmes multivariés, en mettant l'accent sur l'adaptation des modèles marginaux et de dépendance ensemble pour une estimation précise.