Ex-tangential quadrilateralIn Euclidean geometry, an ex-tangential quadrilateral is a convex quadrilateral where the extensions of all four sides are tangent to a circle outside the quadrilateral. It has also been called an exscriptible quadrilateral. The circle is called its excircle, its radius the exradius and its center the excenter (E in the figure). The excenter lies at the intersection of six angle bisectors.
Quadrilatère circonscriptiblevignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
Cerf-volant droitdroite|vignette| Cerf-volant droit avec ses cercles circonscrit inscrit. vignette|Quadrilatère circonscriptible divisé en quatre cerfs-volants droits. En géométrie euclidienne, un cerf-volant droit est un cerf-volant (quadrilatère dont les quatre côtés peuvent être regroupés en deux paires de côtés adjacents de même longueur) ayant deux angles droits opposés. Une condition équivalent est qu'il soit inscrit dans un cercle.
Trapèze circonscriptibledroite|vignette|300x300px|Un trapèze circonscriptible En géométrie euclidienne, un trapèze circonscriptible, également appelé trapèze tangent, est un trapèze dont les quatre côtés sont tous tangents à un cercle situé à l'intérieur du trapèze : le cercle inscrit. C'est un cas particulier de quadrilatère circonscriptible, dont au moins une paire de côtés opposés sont parallèles. Les losanges et carrés sont des exemples de trapèzes circonscriptibles.
Quadrilatère orthodiagonalvignette|Exemples de quadrilatères orthodiagonaux non convexes. En géométrie euclidienne, un quadrilatère orthodiagonal est un quadrilatère dont les diagonales se coupent à angle droit. Autrement dit, il s'agit d'un polygone à quatre côtés dont les segments entre sommets non adjacents sont perpendiculaires. centré|vignette|400x400px|Exemples de quadrilatères orthodiagonaux convexes. Un cerf-volant est un quadrilatère orthodiagonal dont l'une des diagonales est axe de symétrie.
Quadrilatère inscriptibleEn géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
Théorème de Pitotvignette|AB + CD = (a + b) + (c + d) = (a + d) + (b + c) = AD + BC. En géométrie, le théorème de Pitot, démontré en 1725 par l'ingénieur français Henri Pitot, énonce que si un quadrilatère est circonscriptible (c'est-à-dire si ses quatre côtés sont tangents à un même cercle), alors la somme des longueurs de deux côtés opposés est égale à la somme des deux autres. Pour le démontrer, il suffit de décomposer ces quatre longueurs, selon les points de contact, en huit longueurs égales deux à deux .
SemiperimeterIn geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
Cerf-volant (géométrie)En géométrie, un cerf-volant est un quadrilatère dont une des diagonales est un axe de symétrie (ou — ce qui est équivalent — un quadrilatère formé de deux paires de côtés adjacents égaux). Les diagonales peuvent se couper à l'intérieur (cerf-volant convexe) ou à l'extérieur (« pointe de flèche » ou cerf-volant non convexe). Ceci contraste avec un parallélogramme, où les côtés égaux sont opposés. L'objet géométrique est nommé en référence au cerf-volant que l'on fait voler, qui a, dans son aspect le plus simple, la forme d'un cerf-volant convexe.
QuadrilatèreEn géométrie plane, un quadrilatère est un polygone à quatre côtés. Les trapèzes, parallélogrammes, losanges, rectangles, carrés et cerfs-volants sont des quadrilatères particuliers. Le mot « quadrilatère » provient du latin : quatuor, quatre, et latus, lateris, côté. Le mot équivalent d'origine grecque est tétrapleure (de τεσσερα / tèssera, quatre, et πλευρά / pleura, côté) ou tétragone (de γωνία / gônia, angle). Le mot tétragone était employé par Gerbert d'Aurillac au et par Oresme au .