Théorème de Banach-SchauderEn analyse fonctionnelle, le théorème de Banach-Schauder, également appelé théorème de l'application ouverte, est un résultat fondamental qui affirme qu'une application linéaire continue surjective entre deux espaces de Banach (ou plus généralement : deux espaces vectoriels topologiques complètement métrisables) est ouverte. C'est une conséquence importante du théorème de Baire, qui affirme que dans un espace métrique complet, toute intersection dénombrable d'ouverts denses est dense.
Espace de MontelEn topologie des espaces vectoriels, on appelle espace de Montel un espace vectoriel topologique localement convexe séparé, tonnelé et dont tout fermé borné est compact. Le nom provient du mathématicien Paul Montel. Tout espace de Montel est réflexif et quasi complet. Son dual fort est un espace de Montel. Le quotient d'un espace de Fréchet-Montel par un sous-espace fermé peut n'être pas réflexif, et a fortiori ne pas être un espace de Montel (en revanche, le quotient d'un espace de Fréchet-Schwartz par un sous-espace fermé est un espace de Fréchet-Montel).
Banach manifoldIn mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). Banach manifolds are one possibility of extending manifolds to infinite dimensions. A further generalisation is to Fréchet manifolds, replacing Banach spaces by Fréchet spaces. On the other hand, a Hilbert manifold is a special case of a Banach manifold in which the manifold is locally modeled on Hilbert spaces.
Complemented subspaceIn the branch of mathematics called functional analysis, a complemented subspace of a topological vector space is a vector subspace for which there exists some other vector subspace of called its (topological) complement in , such that is the direct sum in the category of topological vector spaces. Formally, topological direct sums strengthen the algebraic direct sum by requiring certain maps be continuous; the result retains many nice properties from the operation of direct sum in finite-dimensional vector spaces.
Théorème du graphe ferméEn mathématiques, le théorème du graphe fermé est un théorème d'analyse fonctionnelle qui donne une condition suffisante dans un certain cadre pour qu'une application linéaire soit continue. La réciproque est élémentaire et nécessite beaucoup moins d'hypothèses : le graphe de toute application continue d'un espace topologique quelconque X dans un espace séparé Y est toujours fermé dans X×Y.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).
René Maurice FréchetRené Maurice Fréchet (prénom usuel Maurice), né à Maligny le et mort à Paris le , est un mathématicien français. Mathématicien prolifique, il travailla entre autres en topologie, en théorie des probabilités et en statistiques. Maurice Fréchet fait des études secondaires au lycée Buffon à Paris, où il a comme professeur de mathématiques Jacques Hadamard qui l'encourage vivement et lui donne des cours particuliers.
Théorème de Banach-SteinhausLe théorème de Banach-Steinhaus fait partie, au même titre que le théorème de Hahn-Banach et le théorème de Banach-Schauder, des résultats fondamentaux de l'analyse fonctionnelle. Publié initialement par Stefan Banach et Hugo Steinhaus en 1927, il a aussi été prouvé indépendamment par Hans Hahn, et a connu depuis de nombreuses généralisations. La formulation originelle de ce théorème est la suivante : Lorsque E est un espace de Banach (donc de Baire), il suffit donc que la famille soit simplement bornée sur une partie comaigre, comme E lui-même.
Auxiliary normed spaceIn functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm The other method is used if the disk is absorbing: in this case, the auxiliary normed space is the quotient space If the disk is both bounded and absorbing then the two auxiliary normed spaces are canonically isomorphic (as topological vector spaces and as normed spaces).