Produit cartésienvignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Union (mathématiques)Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪. L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A ∪ B et on la dit « A union B » Formellement : Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.
Iterated binary operationIn mathematics, an iterated binary operation is an extension of a binary operation on a set S to a function on finite sequences of elements of S through repeated application. Common examples include the extension of the addition operation to the summation operation, and the extension of the multiplication operation to the product operation. Other operations, e.g., the set-theoretic operations union and intersection, are also often iterated, but the iterations are not given separate names.
Univers (logique)En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Complémentaire (théorie des ensembles)En mathématiques, et plus particulièrement en théorie des ensembles, le complémentaire d'une partie d'un ensemble est constitué de tous les éléments de n'appartenant pas à . Le complémentaire de est . En cas de risque de confusion, si l'on veut préciser que l'on parle du complémentaire de dans , on note . Si est différent de l'ensemble vide et de , alors et forment une partition de l'ensemble . Lorsque est un ensemble fini, la somme des cardinaux de et est égale au cardinal de : D'où on déduit : Exemple Pour dénombrer les absents dans une assemblée prévue de cinquante personnes, il suffit de compter les présents.
Universal quantificationIn mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.
Inclusion (mathématiques)En mathématiques, l’inclusion est une relation d'ordre entre ensembles. On dit qu'un ensemble A est inclus dans un ensemble B si tous les éléments de A sont aussi éléments de B. On dit dans ce cas que A est un sous-ensemble ou une partie de B, ou encore que B est sur-ensemble de A. Cette relation n'est pas symétrique a priori, car il peut y avoir des éléments du deuxième ensemble qui n'appartiennent pas au premier. Plus précisément, il y a inclusion dans les deux sens entre deux ensembles si et seulement si ces deux ensembles sont égaux.
Vérité creuseEn mathématiques et en logique, une est un énoncé conditionnel ou universel qui est vrai parce que l'antécédent ne peut être satisfait. Par exemple, l'énoncé « tous les téléphones portables dans la pièce sont éteints » est vrai lorsqu'aucun téléphone portable ne se trouve dans la pièce. Dans ce cas, l'énoncé « tous les téléphones cellulaires dans la pièce sont allumés » est également vrai, tout comme la conjonction des deux : « tous les téléphones cellulaires dans la pièce sont allumés et éteints », qui serait autrement incohérente.