Tribu (mathématiques)En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.
Frequentist probabilityFrequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repeatable objective process (and are thus ideally devoid of opinion). The continued use of frequentist methods in scientific inference, however, has been called into question. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the classical interpretation.
Andreï Markov (mathématicien)Andreï Andreïevitch Markov (en Андрей Андреевич Марков) (1856-1922) est un mathématicien russe. Il est considéré comme le fondateur de la théorie des processus stochastiques. La mère d'Andreï Markov, Nadejda Petrovna, est la fille d'un ouvrier d'État. Son père, Andreï Grigorievitch Markov, membre de la petite noblesse, sert dans le département des forêts, puis devient gestionnaire de domaine privé. Dans ses premières années, Markov est en mauvaise santé et jusqu'à l'âge de dix ans, il ne peut marcher qu'à l'aide de béquilles.
Presque tousEn mathématiques, le terme « presque tous » signifie « tous sauf une quantité négligeable ». Plus précisément, si est un ensemble, « presque tous les éléments de » signifie « tous les éléments de à l'exception de ceux d'un sous-ensemble négligeable de ». La signification de « négligeable » dépend du contexte mathématique : par exemple, cela peut signifier fini, dénombrable ou de mesure nulle . En revanche, " presque aucun " signifie "un montant négligeable"; c'est-à-dire "presque aucun élément de " signifie "une quantité négligeable d'éléments de ".
Fonction de masse (probabilités)En théorie des probabilités, la fonction de masse est la fonction qui donne la probabilité de chaque issue ( résultat élémentaire) d'une expérience aléatoire. C'est souvent ainsi que l'on définit une loi de probabilité discrète. Elle se distingue de la fonction de densité, de la densité de probabilité, en ceci que les densités de probabilité ne sont définies que pour des variables aléatoires absolument continues, et que ce sont leurs intégrales sur des domaines qui ont valeurs de probabilités (et non leurs valeurs en des points).
Presque sûrementvignette|alt=Illustration d'un évènement négligeable|Illustration du concept : l'évènement où la fléchette atteint exactement le point central de la cible est de probabilité 0. Autrement dit, l'évènement où la fléchette n'atteint pas le point central de la cible est presque sûr. En théorie des probabilités, un évènement est dit presque sûr s'il a une probabilité de un. En d'autres mots, l'ensemble des cas où l'évènement ne se réalise pas est de probabilité nulle.
Outcome (probability)In probability theory, an outcome is a possible result of an experiment or trial. Each possible outcome of a particular experiment is unique, and different outcomes are mutually exclusive (only one outcome will occur on each trial of the experiment). All of the possible outcomes of an experiment form the elements of a sample space. For the experiment where we flip a coin twice, the four possible outcomes that make up our sample space are (H, T), (T, H), (T, T) and (H, H), where "H" represents a "heads", and "T" represents a "tails".
Expérience aléatoirevignette|Exemple d'expérience aléatoire: pile ou face En théorie des probabilités, une expérience aléatoire est une expérience renouvelable (en théorie si ce n'est en pratique), dont le résultat ne peut être prévu, et qui, renouvelée dans des conditions identiques –pour autant que l'observateur puisse s'en assurer– ne donne pas forcément le même résultat à chaque renouvellement. Une succession de lancers d'une même pièce en est un exemple classique. Le tirage au hasard d'un élément dans un ensemble en est un autre exemple.
Almost everywhereIn measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of almost surely in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull.
Abraham de MoivreAbraham de Moivre, né Abraham Moivre (1667, Vitry-le-François – 1754, Londres) est un mathématicien français. Fils d'un père médecin, Abraham Moivre appartient à une famille protestante aisée. Il est cependant scolarisé chez les Pères de la Doctrine chrétienne de Vitry. À l'âge de onze ans, ses parents l'envoient à l'académie protestante de Sedan, où il étudie le grec sous la férule de Du Rondel. En dépit de l'édit de Nantes, l'académie protestante de Sedan est supprimée en 1682 et de Moivre est contraint d'étudier la logique à Saumur jusqu'en 1684.