Explore l'ergonomie spatiale pour les SPDE, couvrant les formulations de base, les effets initiaux des données, et les résultats sur l'ergonomie et le CLT.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Explore la construction d'une roulette, les distributions de probabilité sur les courbes et les propriétés des modèles de surface aléatoires, y compris les processus révolutionnaires d'évolution de Schramm-Loewner.
Couvre la probabilité appliquée, les chaînes de Markov et les processus stochastiques, y compris les matrices de transition, les valeurs propres et les classes de communication.
Couvre la théorie du mouvement brownien, de la diffusion et des promenades aléatoires, en mettant l'accent sur la théorie d'Einstein pour le mouvement unidimensionnel.
Explore le concept de martingales et leur relation avec le mouvement brownien à travers des marches aléatoires simples symétriques et discute des résultats positifs potentiels de la crise actuelle.
Explore les concepts de base du mouvement brownien, des molécules aux cellules, y compris son histoire, son hypothèse contre sa description, la solution de Langevin et les méthodes de mesure du mouvement brownien.