Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore l'échantillonnage de rejet pour générer des valeurs d'échantillon à partir d'une distribution cible, ainsi que l'inférence bayésienne à l'aide de MCMC.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Explore les défis et les stratégies d'échantillonnage des paysages énergétiques bruts, en mettant l'accent sur l'intégration de Monte Carlo et les algorithmes de réglage.
Explore l'approche de distribution quasi-stationnaire dans la modélisation de la dynamique moléculaire, couvrant la dynamique de Langevin, la métastabilité et les modèles cinétiques de Monte Carlo.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.